1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
//! Provides the substrate for implementing pipelined, streaming protocols.
//!
//! In most cases, it's sufficient to work with `streaming::pipeline::{Client,
//! Server}` instead. But for some advanced protocols in which the client and
//! servers have more of a peer relationship, it's useful to work directly with
//! these implementation details.

use futures::sync::mpsc;
use futures::{Future, Poll, Async, Stream, Sink, AsyncSink, StartSend};
use std::io;
use streaming::{Message, Body};
use super::{Frame, Transport};
use buffer_one::BufferOne;

// TODO:
//
// - Wait for service readiness
// - Handle request body stream cancellation

/// Provides protocol pipelining functionality in a generic way over clients
/// and servers. Used internally by `pipeline::Client` and `pipeline::Server`.
pub struct Pipeline<T> where T: Dispatch {
    // True as long as the connection has more request frames to read.
    run: bool,

    // Glues the service with the pipeline task
    dispatch: BufferOne<DispatchSink<T>>,

    // The `Sender` for the current request body stream
    out_body: Option<BodySender<T::BodyOut, T::Error>>,

    // The response body stream
    in_body: Option<T::Stream>,

    // True when the transport is fully flushed
    is_flushed: bool,
}

/// Message used to communicate through the multiplex dispatch
pub type PipelineMessage<T, B, E> = Result<Message<T, B>, E>;

/// Dispatch messages from the transport to the service
pub trait Dispatch {
    /// Type of underlying I/O object
    type Io;

    /// Message written to transport
    type In;

    /// Body written to transport
    type BodyIn;

    /// Messages read from the transport
    type Out;

    /// Outbound body frame
    type BodyOut;

    /// Transport error
    type Error: From<io::Error>;

    /// Body stream written to transport
    type Stream: Stream<Item = Self::BodyIn, Error = Self::Error>;

    /// Transport type
    type Transport: Transport<Item = Frame<Self::Out, Self::BodyOut, Self::Error>,
                              SinkItem = Frame<Self::In, Self::BodyIn, Self::Error>>;

    /// Mutable reference to the transport
    fn transport(&mut self) -> &mut Self::Transport;

    /// Process an out message
    fn dispatch(&mut self, message: PipelineMessage<Self::Out, Body<Self::BodyOut, Self::Error>, Self::Error>) -> io::Result<()>;

    /// Poll the next completed message
    fn poll(&mut self) -> Poll<Option<PipelineMessage<Self::In, Self::Stream, Self::Error>>, io::Error>;

    /// RPC currently in flight
    /// TODO: Get rid of
    fn has_in_flight(&self) -> bool;
}

struct DispatchSink<T> {
    inner: T,
}

type BodySender<B, E> = BufferOne<mpsc::Sender<Result<B, E>>>;

impl<T> Pipeline<T> where T: Dispatch {
    /// Create a new pipeline `Pipeline` dispatcher with the given service and
    /// transport
    pub fn new(dispatch: T) -> Pipeline<T> {
        // Add `Sink` impl for `Dispatch`
        let dispatch = DispatchSink { inner: dispatch };

        // Add a single slot buffer for the sink
        let dispatch = BufferOne::new(dispatch);

        Pipeline {
            run: true,
            dispatch: dispatch,
            out_body: None,
            in_body: None,
            is_flushed: true,
        }
    }

    /// Returns true if the pipeline server dispatch has nothing left to do
    fn is_done(&self) -> bool {
        !self.run && self.is_flushed && !self.has_in_flight()
    }

    fn read_out_frames(&mut self) -> io::Result<()> {
        while self.run {
            // Return true if the pipeliner can process new outbound frames
            if !self.check_out_body_stream() {
                break;
            }

            if let Async::Ready(frame) = try!(self.dispatch.get_mut().inner.transport().poll()) {
                try!(self.process_out_frame(frame));
            } else {
                break;
            }
        }

        Ok(())
    }

    fn check_out_body_stream(&mut self) -> bool {
        let body = match self.out_body {
            Some(ref mut body) => body,
            None => return true,
        };

        body.poll_ready().is_ready()
    }

    fn process_out_frame(&mut self,
                         frame: Option<Frame<T::Out, T::BodyOut, T::Error>>)
                         -> io::Result<()> {
        trace!("process_out_frame");
        // At this point, the service & transport are ready to process the
        // frame, no matter what it is.
        match frame {
            Some(Frame::Message { message, body }) => {
                if body {
                    trace!("read out message with body");

                    let (tx, rx) = Body::pair();
                    let message = Message::WithBody(message, rx);

                    // Track the out body sender. If `self.out_body`
                    // currently holds a sender for the previous out body, it
                    // will get dropped. This terminates the stream.
                    self.out_body = Some(BufferOne::new(tx));

                    if let Err(_) = self.dispatch.get_mut().inner.dispatch(Ok(message)) {
                        // TODO: Should dispatch be infallible
                        unimplemented!();
                    }
                } else {
                    trace!("read out message");

                    let message = Message::WithoutBody(message);

                    // There is no streaming body. Set `out_body` to `None` so that
                    // the previous body stream is dropped.
                    self.out_body = None;

                    if let Err(_) = self.dispatch.get_mut().inner.dispatch(Ok(message)) {
                        // TODO: Should dispatch be infalliable
                        unimplemented!();
                    }
                }
            }
            Some(Frame::Body { chunk }) => {
                match chunk {
                    Some(chunk) => {
                        trace!("read out body chunk");
                        try!(self.process_out_body_chunk(chunk));
                    }
                    None => {
                        trace!("read out body EOF");
                        // Drop the sender.
                        // TODO: Ensure a sender exists
                        let _ = self.out_body.take();
                    }
                }
            }
            None => {
                trace!("read Frame::Done");
                // At this point, we just return. This works
                // because tick() will be called again and go
                // through the read-cycle again.
                self.run = false;
            }
            Some(Frame::Error { .. }) => {
                // At this point, the transport is toast, there
                // isn't much else that we can do. Killing the task
                // will cause all in-flight requests to abort, but
                // they can't be written to the transport anyway...
                return Err(io::Error::new(io::ErrorKind::BrokenPipe, "An error occurred."));
            }
        }

        Ok(())
    }

    fn process_out_body_chunk(&mut self, chunk: T::BodyOut) -> io::Result<()> {
        trace!("process_out_body_chunk");
        let mut reset = false;
        match self.out_body {
            Some(ref mut body) => {
                debug!("sending a chunk");

                // Try sending the out body chunk
                match body.start_send(Ok(chunk)) {
                    Ok(AsyncSink::Ready) => debug!("immediately done"),
                    Err(_e) => reset = true, // interest canceled
                    Ok(AsyncSink::NotReady(_)) => {
                        // poll_ready() is checked before entering this path
                        unreachable!();
                    }
                }
            }
            None => {
                debug!("interest canceled");
                // The rx half canceled interest, there is nothing else to do
            }
        }
        if reset {
            self.out_body = None;
        }
        Ok(())
    }

    fn write_in_frames(&mut self) -> io::Result<()> {
        trace!("write_in_frames");
        while self.dispatch.poll_ready().is_ready() {
            // Ensure the current in body is fully written
            if !try!(self.write_in_body()) {
                debug!("write in body not done");
                break;
            }
            debug!("write in body done");

            // Write the next in-flight in message
            match try!(self.dispatch.get_mut().inner.poll()) {
                Async::Ready(Some(Ok(message))) => {
                    trace!("   --> got message");
                    try!(self.write_in_message(Ok(message)));
                }
                Async::Ready(Some(Err(error))) => {
                    trace!("   --> got error");
                    try!(self.write_in_message(Err(error)));
                }
                Async::Ready(None) => {
                    trace!("   --> got None");
                    // The service is done with the connection.
                    break;
                }
                // Nothing to dispatch
                Async::NotReady => break,
            }
        }

        Ok(())
    }

    fn write_in_message(&mut self, message: Result<Message<T::In, T::Stream>, T::Error>) -> io::Result<()> {
        trace!("write_in_message");
        match message {
            Ok(Message::WithoutBody(val)) => {
                trace!("got in_flight value without body");
                let msg = Frame::Message { message: val, body: false };
                try!(assert_send(&mut self.dispatch, msg));

                // TODO: don't panic maybe if this isn't true?
                assert!(self.in_body.is_none());

                // Track the response body
                self.in_body = None;
            }
            Ok(Message::WithBody(val, body)) => {
                trace!("got in_flight value with body");
                let msg = Frame::Message { message: val, body: true };
                try!(assert_send(&mut self.dispatch, msg));

                // TODO: don't panic maybe if this isn't true?
                assert!(self.in_body.is_none());

                // Track the response body
                self.in_body = Some(body);
            }
            Err(e) => {
                trace!("got in_flight error");
                let msg = Frame::Error { error: e };
                try!(assert_send(&mut self.dispatch, msg));
            }
        }

        Ok(())
    }

    // Returns true if the response body is fully written
    fn write_in_body(&mut self) -> io::Result<bool> {
        trace!("write_in_body");

        if self.in_body.is_some() {
            loop {
                // Even though this is checked before entering the function, checking should be
                // cheap and this is looped
                if !self.dispatch.poll_ready().is_ready() {
                    return Ok(false);
                }

                match self.in_body.as_mut().unwrap().poll() {
                    Ok(Async::Ready(Some(chunk))) => {
                        try!(assert_send(&mut self.dispatch,
                                         Frame::Body { chunk: Some(chunk) }));
                    }
                    Ok(Async::Ready(None)) => {
                        try!(assert_send(&mut self.dispatch,
                                         Frame::Body { chunk: None }));
                        break;
                    }
                    Err(_) => {
                        unimplemented!();
                    }
                    Ok(Async::NotReady) => {
                        debug!("not ready");
                        return Ok(false);
                    }
                }
            }
        }

        self.in_body = None;
        Ok(true)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.is_flushed = try!(self.dispatch.poll_complete()).is_ready();

        if let Some(ref mut out_body) = self.out_body {
            if out_body.poll_complete().is_ok() {
                return Ok(());
            }
        } else {
            return Ok(());
        }

        // Fall through and unset out_body
        self.out_body = None;
        Ok(())
    }

    fn has_in_flight(&self) -> bool {
        self.dispatch.get_ref().inner.has_in_flight()
    }
}

impl<T> Future for Pipeline<T> where T: Dispatch {
    type Item = ();
    type Error = io::Error;

    // Tick the pipeline state machine
    fn poll(&mut self) -> Poll<(), io::Error> {
        trace!("Pipeline::tick");

        // Always tick the transport first
        self.dispatch.get_mut().inner.transport().tick();

        // First read off data from the socket
        try!(self.read_out_frames());

        // Handle completed responses
        try!(self.write_in_frames());

        // Try flushing buffered writes
        try!(self.flush());

        // Clean shutdown of the pipeline server can happen when
        //
        // 1. The server is done running, this is signaled by Transport::read()
        //    returning Frame::Done.
        //
        // 2. The transport is done writing all data to the socket, this is
        //    signaled by Transport::flush() returning Ok(Some(())).
        //
        // 3. There are no further responses to write to the transport.
        //
        // It is necessary to perfom these three checks in order to handle the
        // case where the client shuts down half the socket.
        //
        if self.is_done() {
            return Ok(().into())
        }

        // Tick again later
        Ok(Async::NotReady)
    }
}

impl<T: Dispatch> Sink for DispatchSink<T> {
    type SinkItem = <T::Transport as Sink>::SinkItem;
    type SinkError = io::Error;

    fn start_send(&mut self, item: Self::SinkItem)
                  -> StartSend<Self::SinkItem, io::Error>
    {
        self.inner.transport().start_send(item)
    }

    fn poll_complete(&mut self) -> Poll<(), io::Error> {
        self.inner.transport().poll_complete()
    }
}

fn assert_send<S: Sink>(s: &mut S, item: S::SinkItem) -> Result<(), S::SinkError> {
    match try!(s.start_send(item)) {
        AsyncSink::Ready => Ok(()),
        AsyncSink::NotReady(_) => {
            panic!("sink reported itself as ready after `poll_ready` but was \
                    then unable to accept a message")
        }
    }
}