1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
//! This library provides a toolkit for rapid protocol development and usage, //! working with the rest of the Tokio stack. //! //! # Protocols //! //! Here, a **protocol** is a way of providing or consuming a service. Protocols //! are implemented via traits, which are arranged into a taxonomy: //! //! - `pipeline::{Client, Server}` //! - `multiplex::{Client, Server}` //! - `streaming::pipeline::{Client, Server}` //! - `streaming::multiplex::{Client, Server}` //! //! ### Pipeline vs multiplex //! //! By default, protocols allow a client to transmit multiple requests without //! waiting for the corresponding responses, which is commonly used to improve //! the throughput of single connections. //! //! In a **pipelined protocol**, the server responds to client requests in the //! order they were sent. Example pipelined protocols include HTTP/1.1 and Redis. //! Pipelining with the max number of in-flight requests set to 1 implies that //! for each request, the response must be received before sending another //! request on the same connection. //! //! In a **multiplexed protocol**, the server responds to client requests in the //! order of completion. Request IDs are used to match responses back to requests. //! //! In both cases, if multiple requests are sent, the service running on the //! server *may* process them concurrently, although many services will impose //! some restrictions depending on the request type. //! //! ### Streaming //! //! In a non-streaming protocols, the client sends a complete request in a //! single message, and the server provides a complete response in a single //! message. Protocol tools in this style are available in the top-level `pipeline` //! and `multiplex` modules. //! //! In a **streaming protocol**, requests and responses can carry **body //! streams**, which allows partial processing before the complete body has been //! transferred. Streaming protocol tools are found within the `streaming` //! submodule. //! //! # Transports //! //! A key part of any protocol is its **transport**, which is the way that it //! sends and received *frames* on its connection. For simple protocols, these //! frames correspond directly to complete requests and responses. For more //! complicated protocols, they carry additional metadata, and may only be one //! part of a request or response body. //! //! Transports are defined by implementing the `transport::Transport` trait. The //! `transport::CodecTransport` type can be used to wrap a `Codec` (from //! `tokio-core`), which is a simple way to build a transport. //! //! # An example server //! //! The following code shows how to implement a simple server that receives //! newline-separated integer values, doubles them, and returns them. It //! illustrates several aspects of the Tokio stack: //! //! - Implementing a codec `IntCodec` for reading and writing integers from a //! byte buffer. //! - Implementing a server protocol `IntProto` using this codec as a transport. //! - Implementing a service `Doubler` for doubling integers. //! - Spinning up this service on a local port (in `main`). //! //! ```no_run //! extern crate futures; //! extern crate tokio_core; //! extern crate tokio_proto; //! extern crate tokio_service; //! //! use std::str; //! use std::io::{self, ErrorKind, Write}; //! //! use futures::{future, Future, BoxFuture}; //! use tokio_core::io::{Io, Codec, Framed, EasyBuf}; //! use tokio_proto::TcpServer; //! use tokio_proto::pipeline::ServerProto; //! use tokio_service::Service; //! //! // First, we implement a *codec*, which provides a way of encoding and //! // decoding messages for the protocol. See the documentation for `Codec` in //! // `tokio-core` for more details on how that works. //! //! #[derive(Default)] //! pub struct IntCodec; //! //! fn parse_u64(from: &[u8]) -> Result<u64, io::Error> { //! Ok(str::from_utf8(from) //! .map_err(|e| io::Error::new(ErrorKind::InvalidData, e))? //! .parse() //! .map_err(|e| io::Error::new(ErrorKind::InvalidData, e))?) //! } //! //! impl Codec for IntCodec { //! type In = u64; //! type Out = u64; //! //! // Attempt to decode a message from the given buffer if a complete //! // message is available; returns `Ok(None)` if the buffer does not yet //! // hold a complete message. //! fn decode(&mut self, buf: &mut EasyBuf) -> Result<Option<u64>, io::Error> { //! if let Some(i) = buf.as_slice().iter().position(|&b| b == b'\n') { //! // remove the line, including the '\n', from the buffer //! let full_line = buf.drain_to(i + 1); //! //! // strip the'`\n' //! let slice = &full_line.as_slice()[..i]; //! //! Ok(Some(parse_u64(slice)?)) //! } else { //! Ok(None) //! } //! } //! //! // Attempt to decode a message assuming that the given buffer contains //! // *all* remaining input data. //! fn decode_eof(&mut self, buf: &mut EasyBuf) -> io::Result<u64> { //! let amt = buf.len(); //! Ok(parse_u64(buf.drain_to(amt).as_slice())?) //! } //! //! fn encode(&mut self, item: u64, into: &mut Vec<u8>) -> io::Result<()> { //! writeln!(into, "{}", item); //! Ok(()) //! } //! } //! //! // Next, we implement the server protocol, which just hooks up the codec above. //! //! pub struct IntProto; //! //! impl<T: Io + 'static> ServerProto<T> for IntProto { //! type Request = u64; //! type Response = u64; //! type Error = io::Error; //! type Transport = Framed<T, IntCodec>; //! type BindTransport = Result<Self::Transport, io::Error>; //! //! fn bind_transport(&self, io: T) -> Self::BindTransport { //! Ok(io.framed(IntCodec)) //! } //! } //! //! // Now we implement a service we'd like to run on top of this protocol //! //! pub struct Doubler; //! //! impl Service for Doubler { //! type Request = u64; //! type Response = u64; //! type Error = io::Error; //! type Future = BoxFuture<u64, io::Error>; //! //! fn call(&mut self, req: u64) -> Self::Future { //! // Just return the request, doubled //! future::finished(req * 2).boxed() //! } //! } //! //! // Finally, we can actually host this service locally! //! fn main() { //! let addr = "0.0.0.0:12345".parse().unwrap(); //! TcpServer::new(IntProto, addr) //! .serve(|| Ok(Doubler)); //! } //! ``` #![deny(warnings, missing_docs)] #![allow(deprecated)] // TODO remove this extern crate net2; extern crate rand; extern crate slab; extern crate smallvec; extern crate take; extern crate tokio_core; extern crate tokio_service; #[macro_use] extern crate futures; #[macro_use] extern crate log; mod simple; pub use simple::{pipeline, multiplex}; pub mod streaming; pub mod util; mod tcp_client; pub use tcp_client::{TcpClient, Connect}; mod tcp_server; pub use tcp_server::TcpServer; use tokio_core::reactor::Handle; use tokio_service::Service; // TODO: move this into futures-rs mod buffer_one; /// Binds a service to an I/O object. /// /// This trait is not intended to be implemented directly; instead, implement /// one of the server protocol traits: /// /// - `pipeline::Server` /// - `multiplex::Server` /// - `streaming::pipeline::Server` /// - `streaming::multiplex::Server` /// /// See the crate documentation for more details on those traits. /// /// The `Kind` parameter, in particular, is a zero-sized type used to allow /// blanket implementation from the various protocol traits. Any additional /// implementations of this trait should use their own zero-sized kind type to /// distinguish them. pub trait BindServer<Kind, T: 'static>: 'static { /// The request type for the service. type ServiceRequest; /// The response type for the service. type ServiceResponse; /// The error type for the service. type ServiceError; /// Bind the service. /// /// This method should spawn a new task on the given event loop handle which /// provides the given service on the given I/O object. fn bind_server<S>(&self, handle: &Handle, io: T, service: S) where S: Service<Request = Self::ServiceRequest, Response = Self::ServiceResponse, Error = Self::ServiceError> + 'static; } /// Binds an I/O object as a client of a service. /// /// This trait is not intended to be implemented directly; instead, implement /// one of the server protocol traits: /// /// - `pipeline::Client` /// - `multiplex::Client` /// - `streaming::pipeline::Client` /// - `streaming::multiplex::Client` /// /// See the crate documentation for more details on those traits. /// /// The `Kind` parameter, in particular, is a zero-sized type used to allow /// blanket implementation from the various protocol traits. Any additional /// implementations of this trait should use their own zero-sized kind type to /// distinguish them. pub trait BindClient<Kind, T: 'static>: 'static { /// The request type for the service. type ServiceRequest; /// The response type for the service. type ServiceResponse; /// The error type for the service. type ServiceError; /// The bound service. type BindClient: Service<Request = Self::ServiceRequest, Response = Self::ServiceResponse, Error = Self::ServiceError>; /// Bind an I/O object as a service. fn bind_client(&self, handle: &Handle, io: T) -> Self::BindClient; }