1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//! This library provides a toolkit for rapid protocol development and usage,
//! working with the rest of the Tokio stack.
//!
//! # Protocols
//!
//! Here, a **protocol** is a way of providing or consuming a service. Protocols
//! are implemented via traits, which are arranged into a taxonomy:
//!
//! - `pipeline::{Client, Server}`
//! - `multiplex::{Client, Server}`
//! - `streaming::pipeline::{Client, Server}`
//! - `streaming::multiplex::{Client, Server}`
//!
//! ### Pipeline vs multiplex
//!
//! By default, protocols allow a client to transmit multiple requests without
//! waiting for the corresponding responses, which is commonly used to improve
//! the throughput of single connections.
//!
//! In a **pipelined protocol**, the server responds to client requests in the
//! order they were sent. Example pipelined protocols include HTTP/1.1 and Redis.
//! Pipelining with the max number of in-flight requests set to 1 implies that
//! for each request, the response must be received before sending another
//! request on the same connection.
//!
//! In a **multiplexed protocol**, the server responds to client requests in the
//! order of completion. Request IDs are used to match responses back to requests.
//!
//! In both cases, if multiple requests are sent, the service running on the
//! server *may* process them concurrently, although many services will impose
//! some restrictions depending on the request type.
//!
//! ### Streaming
//!
//! In a non-streaming protocols, the client sends a complete request in a
//! single message, and the server provides a complete response in a single
//! message. Protocol tools in this style are available in the top-level `pipeline`
//! and `multiplex` modules.
//!
//! In a **streaming protocol**, requests and responses can carry **body
//! streams**, which allows partial processing before the complete body has been
//! transferred. Streaming protocol tools are found within the `streaming`
//! submodule.
//!
//! # Transports
//!
//! A key part of any protocol is its **transport**, which is the way that it
//! sends and received *frames* on its connection. For simple protocols, these
//! frames correspond directly to complete requests and responses. For more
//! complicated protocols, they carry additional metadata, and may only be one
//! part of a request or response body.
//!
//! Transports are defined by implementing the `transport::Transport` trait. The
//! `transport::CodecTransport` type can be used to wrap a `Codec` (from
//! `tokio-core`), which is a simple way to build a transport.
//!
//! # An example server
//!
//! The following code shows how to implement a simple server that receives
//! newline-separated integer values, doubles them, and returns them. It
//! illustrates several aspects of the Tokio stack:
//!
//! - Implementing a codec `IntCodec` for reading and writing integers from a
//!   byte buffer.
//! - Implementing a server protocol `IntProto` using this codec as a transport.
//! - Implementing a service `Doubler` for doubling integers.
//! - Spinning up this service on a local port (in `main`).
//!
//! ```no_run
//! extern crate futures;
//! extern crate tokio_core;
//! extern crate tokio_proto;
//! extern crate tokio_service;
//!
//! use std::str;
//! use std::io::{self, ErrorKind, Write};
//!
//! use futures::{future, Future, BoxFuture};
//! use tokio_core::io::{Io, Codec, Framed, EasyBuf};
//! use tokio_proto::TcpServer;
//! use tokio_proto::pipeline::ServerProto;
//! use tokio_service::Service;
//!
//! // First, we implement a *codec*, which provides a way of encoding and
//! // decoding messages for the protocol. See the documentation for `Codec` in
//! // `tokio-core` for more details on how that works.
//!
//! #[derive(Default)]
//! pub struct IntCodec;
//!
//! fn parse_u64(from: &[u8]) -> Result<u64, io::Error> {
//!     Ok(str::from_utf8(from)
//!        .map_err(|e| io::Error::new(ErrorKind::InvalidData, e))?
//!        .parse()
//!        .map_err(|e| io::Error::new(ErrorKind::InvalidData, e))?)
//! }
//!
//! impl Codec for IntCodec {
//!     type In = u64;
//!     type Out = u64;
//!
//!     // Attempt to decode a message from the given buffer if a complete
//!     // message is available; returns `Ok(None)` if the buffer does not yet
//!     // hold a complete message.
//!     fn decode(&mut self, buf: &mut EasyBuf) -> Result<Option<u64>, io::Error> {
//!         if let Some(i) = buf.as_slice().iter().position(|&b| b == b'\n') {
//!             // remove the line, including the '\n', from the buffer
//!             let full_line = buf.drain_to(i + 1);
//!
//!             // strip the'`\n'
//!             let slice = &full_line.as_slice()[..i];
//!
//!             Ok(Some(parse_u64(slice)?))
//!         } else {
//!             Ok(None)
//!         }
//!     }
//!
//!     // Attempt to decode a message assuming that the given buffer contains
//!     // *all* remaining input data.
//!     fn decode_eof(&mut self, buf: &mut EasyBuf) -> io::Result<u64> {
//!         let amt = buf.len();
//!         Ok(parse_u64(buf.drain_to(amt).as_slice())?)
//!     }
//!
//!     fn encode(&mut self, item: u64, into: &mut Vec<u8>) -> io::Result<()> {
//!         writeln!(into, "{}", item);
//!         Ok(())
//!     }
//! }
//!
//! // Next, we implement the server protocol, which just hooks up the codec above.
//!
//! pub struct IntProto;
//!
//! impl<T: Io + 'static> ServerProto<T> for IntProto {
//!     type Request = u64;
//!     type Response = u64;
//!     type Error = io::Error;
//!     type Transport = Framed<T, IntCodec>;
//!     type BindTransport = Result<Self::Transport, io::Error>;
//!
//!     fn bind_transport(&self, io: T) -> Self::BindTransport {
//!         Ok(io.framed(IntCodec))
//!     }
//! }
//!
//! // Now we implement a service we'd like to run on top of this protocol
//!
//! pub struct Doubler;
//!
//! impl Service for Doubler {
//!     type Request = u64;
//!     type Response = u64;
//!     type Error = io::Error;
//!     type Future = BoxFuture<u64, io::Error>;
//!
//!     fn call(&mut self, req: u64) -> Self::Future {
//!         // Just return the request, doubled
//!         future::finished(req * 2).boxed()
//!     }
//! }
//!
//! // Finally, we can actually host this service locally!
//! fn main() {
//!     let addr = "0.0.0.0:12345".parse().unwrap();
//!     TcpServer::new(IntProto, addr)
//!         .serve(|| Ok(Doubler));
//! }
//! ```

#![deny(warnings, missing_docs)]
#![allow(deprecated)] // TODO remove this

extern crate net2;
extern crate rand;
extern crate slab;
extern crate smallvec;
extern crate take;
extern crate tokio_core;
extern crate tokio_service;

#[macro_use]
extern crate futures;

#[macro_use]
extern crate log;

mod simple;
pub use simple::{pipeline, multiplex};

pub mod streaming;
pub mod util;

mod tcp_client;
pub use tcp_client::{TcpClient, Connect};

mod tcp_server;
pub use tcp_server::TcpServer;

use tokio_core::reactor::Handle;
use tokio_service::Service;

// TODO: move this into futures-rs
mod buffer_one;

/// Binds a service to an I/O object.
///
/// This trait is not intended to be implemented directly; instead, implement
/// one of the server protocol traits:
///
/// - `pipeline::Server`
/// - `multiplex::Server`
/// - `streaming::pipeline::Server`
/// - `streaming::multiplex::Server`
///
/// See the crate documentation for more details on those traits.
///
/// The `Kind` parameter, in particular, is a zero-sized type used to allow
/// blanket implementation from the various protocol traits. Any additional
/// implementations of this trait should use their own zero-sized kind type to
/// distinguish them.
pub trait BindServer<Kind, T: 'static>: 'static {
    /// The request type for the service.
    type ServiceRequest;

    /// The response type for the service.
    type ServiceResponse;

    /// The error type for the service.
    type ServiceError;

    /// Bind the service.
    ///
    /// This method should spawn a new task on the given event loop handle which
    /// provides the given service on the given I/O object.
    fn bind_server<S>(&self, handle: &Handle, io: T, service: S)
        where S: Service<Request = Self::ServiceRequest,
                         Response = Self::ServiceResponse,
                         Error = Self::ServiceError> + 'static;
}

/// Binds an I/O object as a client of a service.
///
/// This trait is not intended to be implemented directly; instead, implement
/// one of the server protocol traits:
///
/// - `pipeline::Client`
/// - `multiplex::Client`
/// - `streaming::pipeline::Client`
/// - `streaming::multiplex::Client`
///
/// See the crate documentation for more details on those traits.
///
/// The `Kind` parameter, in particular, is a zero-sized type used to allow
/// blanket implementation from the various protocol traits. Any additional
/// implementations of this trait should use their own zero-sized kind type to
/// distinguish them.
pub trait BindClient<Kind, T: 'static>: 'static {
    /// The request type for the service.
    type ServiceRequest;

    /// The response type for the service.
    type ServiceResponse;

    /// The error type for the service.
    type ServiceError;

    /// The bound service.
    type BindClient: Service<Request = Self::ServiceRequest,
                             Response = Self::ServiceResponse,
                             Error = Self::ServiceError>;

    /// Bind an I/O object as a service.
    fn bind_client(&self, handle: &Handle, io: T) -> Self::BindClient;
}