1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
use std::fmt; use std::io::{self, Read, Write}; use std::mem; use std::net::{self, SocketAddr, Shutdown}; use futures::stream::Stream; use futures::sync::oneshot; use futures::{self, Future, failed, Poll, Async}; use mio; use io::{Io, IoFuture}; use reactor::{Handle, PollEvented}; /// An I/O object representing a TCP socket listening for incoming connections. /// /// This object can be converted into a stream of incoming connections for /// various forms of processing. pub struct TcpListener { io: PollEvented<mio::tcp::TcpListener>, pending_accept: Option<oneshot::Receiver<io::Result<(TcpStream, SocketAddr)>>>, } /// Stream returned by the `TcpListener::incoming` function representing the /// stream of sockets received from a listener. pub struct Incoming { inner: TcpListener, } impl TcpListener { /// Create a new TCP listener associated with this event loop. /// /// The TCP listener will bind to the provided `addr` address, if available. /// If the result is `Ok`, the socket has successfully bound. pub fn bind(addr: &SocketAddr, handle: &Handle) -> io::Result<TcpListener> { let l = try!(mio::tcp::TcpListener::bind(addr)); TcpListener::new(l, handle) } /// Attempt to accept a connection and create a new connected `TcpStream` if /// successful. /// /// This function will attempt an accept operation, but will not block /// waiting for it to complete. If the operation would block then a "would /// block" error is returned. Additionally, if this method would block, it /// registers the current task to receive a notification when it would /// otherwise not block. /// /// Note that typically for simple usage it's easier to treat incoming /// connections as a `Stream` of `TcpStream`s with the `incoming` method /// below. /// /// # Panics /// /// This function will panic if it is called outside the context of a /// future's task. It's recommended to only call this from the /// implementation of a `Future::poll`, if necessary. pub fn accept(&mut self) -> io::Result<(TcpStream, SocketAddr)> { loop { if let Some(mut pending) = self.pending_accept.take() { match pending.poll().expect("shouldn't be canceled") { Async::NotReady => { self.pending_accept = Some(pending); return Err(mio::would_block()) }, Async::Ready(r) => return r, } } if let Async::NotReady = self.io.poll_read() { return Err(io::Error::new(io::ErrorKind::WouldBlock, "not ready")) } match self.io.get_ref().accept() { Err(e) => { if e.kind() == io::ErrorKind::WouldBlock { self.io.need_read(); } return Err(e) }, Ok((sock, addr)) => { let (tx, rx) = oneshot::channel(); let remote = self.io.remote().clone(); remote.spawn(move |handle| { let res = PollEvented::new(sock, handle) .map(move |io| { (TcpStream { io: io }, addr) }); tx.complete(res); Ok(()) }); self.pending_accept = Some(rx); // continue to polling the `rx` at the beginning of the loop } } } } /// Create a new TCP listener from the standard library's TCP listener. /// /// This method can be used when the `Handle::tcp_listen` method isn't /// sufficient because perhaps some more configuration is needed in terms of /// before the calls to `bind` and `listen`. /// /// This API is typically paired with the `net2` crate and the `TcpBuilder` /// type to build up and customize a listener before it's shipped off to the /// backing event loop. This allows configuration of options like /// `SO_REUSEPORT`, binding to multiple addresses, etc. /// /// The `addr` argument here is one of the addresses that `listener` is /// bound to and the listener will only be guaranteed to accept connections /// of the same address type currently. /// /// Finally, the `handle` argument is the event loop that this listener will /// be bound to. /// /// The platform specific behavior of this function looks like: /// /// * On Unix, the socket is placed into nonblocking mode and connections /// can be accepted as normal /// /// * On Windows, the address is stored internally and all future accepts /// will only be for the same IP version as `addr` specified. That is, if /// `addr` is an IPv4 address then all sockets accepted will be IPv4 as /// well (same for IPv6). pub fn from_listener(listener: net::TcpListener, addr: &SocketAddr, handle: &Handle) -> io::Result<TcpListener> { let l = try!(mio::tcp::TcpListener::from_listener(listener, addr)); TcpListener::new(l, handle) } fn new(listener: mio::tcp::TcpListener, handle: &Handle) -> io::Result<TcpListener> { let io = try!(PollEvented::new(listener, handle)); Ok(TcpListener { io: io, pending_accept: None }) } /// Test whether this socket is ready to be read or not. pub fn poll_read(&self) -> Async<()> { self.io.poll_read() } /// Returns the local address that this listener is bound to. /// /// This can be useful, for example, when binding to port 0 to figure out /// which port was actually bound. pub fn local_addr(&self) -> io::Result<SocketAddr> { self.io.get_ref().local_addr() } /// Consumes this listener, returning a stream of the sockets this listener /// accepts. /// /// This method returns an implementation of the `Stream` trait which /// resolves to the sockets the are accepted on this listener. pub fn incoming(self) -> Incoming { Incoming { inner: self } } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.get_ref().set_ttl(ttl) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`][link]. /// /// [link]: #method.set_ttl pub fn ttl(&self) -> io::Result<u32> { self.io.get_ref().ttl() } /// Sets the value for the `IPV6_V6ONLY` option on this socket. /// /// If this is set to `true` then the socket is restricted to sending and /// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications /// can bind the same port at the same time. /// /// If this is set to `false` then the socket can be used to send and /// receive packets from an IPv4-mapped IPv6 address. pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> { self.io.get_ref().set_only_v6(only_v6) } /// Gets the value of the `IPV6_V6ONLY` option for this socket. /// /// For more information about this option, see [`set_only_v6`][link]. /// /// [link]: #method.set_only_v6 pub fn only_v6(&self) -> io::Result<bool> { self.io.get_ref().only_v6() } } impl fmt::Debug for TcpListener { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.io.get_ref().fmt(f) } } impl Stream for Incoming { type Item = (TcpStream, SocketAddr); type Error = io::Error; fn poll(&mut self) -> Poll<Option<Self::Item>, io::Error> { Ok(Async::Ready(Some(try_nb!(self.inner.accept())))) } } /// An I/O object representing a TCP stream connected to a remote endpoint. /// /// A TCP stream can either be created by connecting to an endpoint or by /// accepting a connection from a listener. Inside the stream is access to the /// raw underlying I/O object as well as streams for the read/write /// notifications on the stream itself. pub struct TcpStream { io: PollEvented<mio::tcp::TcpStream>, } /// Future returned by `TcpStream::connect` which will resolve to a `TcpStream` /// when the stream is connected. pub struct TcpStreamNew { inner: IoFuture<TcpStream>, } enum TcpStreamConnect { Waiting(TcpStream), Empty, } impl TcpStream { /// Create a new TCP stream connected to the specified address. /// /// This function will create a new TCP socket and attempt to connect it to /// the `addr` provided. The returned future will be resolved once the /// stream has successfully connected. If an error happens during the /// connection or during the socket creation, that error will be returned to /// the future instead. pub fn connect(addr: &SocketAddr, handle: &Handle) -> TcpStreamNew { let future = match mio::tcp::TcpStream::connect(addr) { Ok(tcp) => TcpStream::new(tcp, handle), Err(e) => failed(e).boxed(), }; TcpStreamNew { inner: future } } fn new(connected_stream: mio::tcp::TcpStream, handle: &Handle) -> IoFuture<TcpStream> { let tcp = PollEvented::new(connected_stream, handle); futures::done(tcp).and_then(|io| { TcpStreamConnect::Waiting(TcpStream { io: io }) }).boxed() } /// Creates a new `TcpStream` from the pending socket inside the given /// `std::net::TcpStream`, connecting it to the address specified. /// /// This constructor allows configuring the socket before it's actually /// connected, and this function will transfer ownership to the returned /// `TcpStream` if successful. An unconnected `TcpStream` can be created /// with the `net2::TcpBuilder` type (and also configured via that route). /// /// The platform specific behavior of this function looks like: /// /// * On Unix, the socket is placed into nonblocking mode and then a /// `connect` call is issued. /// /// * On Windows, the address is stored internally and the connect operation /// is issued when the returned `TcpStream` is registered with an event /// loop. Note that on Windows you must `bind` a socket before it can be /// connected, so if a custom `TcpBuilder` is used it should be bound /// (perhaps to `INADDR_ANY`) before this method is called. pub fn connect_stream(stream: net::TcpStream, addr: &SocketAddr, handle: &Handle) -> IoFuture<TcpStream> { match mio::tcp::TcpStream::connect_stream(stream, addr) { Ok(tcp) => TcpStream::new(tcp, handle), Err(e) => failed(e).boxed(), } } /// Test whether this socket is ready to be read or not. /// /// If the socket is *not* readable then the current task is scheduled to /// get a notification when the socket does become readable. That is, this /// is only suitable for calling in a `Future::poll` method and will /// automatically handle ensuring a retry once the socket is readable again. pub fn poll_read(&self) -> Async<()> { self.io.poll_read() } /// Test whether this socket is ready to be written to or not. /// /// If the socket is *not* writable then the current task is scheduled to /// get a notification when the socket does become writable. That is, this /// is only suitable for calling in a `Future::poll` method and will /// automatically handle ensuring a retry once the socket is writable again. pub fn poll_write(&self) -> Async<()> { self.io.poll_write() } /// Returns the local address that this stream is bound to. pub fn local_addr(&self) -> io::Result<SocketAddr> { self.io.get_ref().local_addr() } /// Returns the remote address that this stream is connected to. pub fn peer_addr(&self) -> io::Result<SocketAddr> { self.io.get_ref().peer_addr() } /// Shuts down the read, write, or both halves of this connection. /// /// This function will cause all pending and future I/O on the specified /// portions to return immediately with an appropriate value (see the /// documentation of `Shutdown`). pub fn shutdown(&self, how: Shutdown) -> io::Result<()> { self.io.get_ref().shutdown(how) } /// Sets the value of the `TCP_NODELAY` option on this socket. /// /// If set, this option disables the Nagle algorithm. This means that /// segments are always sent as soon as possible, even if there is only a /// small amount of data. When not set, data is buffered until there is a /// sufficient amount to send out, thereby avoiding the frequent sending of /// small packets. pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> { self.io.get_ref().set_nodelay(nodelay) } /// Gets the value of the `TCP_NODELAY` option on this socket. /// /// For more information about this option, see [`set_nodelay`][link]. /// /// [link]: #method.set_nodelay pub fn nodelay(&self) -> io::Result<bool> { self.io.get_ref().nodelay() } /// Sets whether keepalive messages are enabled to be sent on this socket. /// /// On Unix, this option will set the `SO_KEEPALIVE` as well as the /// `TCP_KEEPALIVE` or `TCP_KEEPIDLE` option (depending on your platform). /// On Windows, this will set the `SIO_KEEPALIVE_VALS` option. /// /// If `None` is specified then keepalive messages are disabled, otherwise /// the number of milliseconds specified will be the time to remain idle /// before sending a TCP keepalive probe. /// /// Some platforms specify this value in seconds, so sub-second millisecond /// specifications may be omitted. pub fn set_keepalive_ms(&self, keepalive: Option<u32>) -> io::Result<()> { self.io.get_ref().set_keepalive_ms(keepalive) } /// Returns whether keepalive messages are enabled on this socket, and if so /// the amount of milliseconds between them. /// /// For more information about this option, see [`set_keepalive_ms`][link]. /// /// [link]: #method.set_keepalive_ms pub fn keepalive_ms(&self) -> io::Result<Option<u32>> { self.io.get_ref().keepalive_ms() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.get_ref().set_ttl(ttl) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`][link]. /// /// [link]: #method.set_ttl pub fn ttl(&self) -> io::Result<u32> { self.io.get_ref().ttl() } } impl Read for TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { self.io.read(buf) } } impl Write for TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result<usize> { self.io.write(buf) } fn flush(&mut self) -> io::Result<()> { self.io.flush() } } impl Io for TcpStream { fn poll_read(&mut self) -> Async<()> { <TcpStream>::poll_read(self) } fn poll_write(&mut self) -> Async<()> { <TcpStream>::poll_write(self) } } impl<'a> Read for &'a TcpStream { fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { (&self.io).read(buf) } } impl<'a> Write for &'a TcpStream { fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (&self.io).write(buf) } fn flush(&mut self) -> io::Result<()> { (&self.io).flush() } } impl<'a> Io for &'a TcpStream { fn poll_read(&mut self) -> Async<()> { <TcpStream>::poll_read(self) } fn poll_write(&mut self) -> Async<()> { <TcpStream>::poll_write(self) } } impl fmt::Debug for TcpStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.io.get_ref().fmt(f) } } impl Future for TcpStreamNew { type Item = TcpStream; type Error = io::Error; fn poll(&mut self) -> Poll<TcpStream, io::Error> { self.inner.poll() } } impl Future for TcpStreamConnect { type Item = TcpStream; type Error = io::Error; fn poll(&mut self) -> Poll<TcpStream, io::Error> { { let stream = match *self { TcpStreamConnect::Waiting(ref s) => s, TcpStreamConnect::Empty => panic!("can't poll TCP stream twice"), }; // Once we've connected, wait for the stream to be writable as // that's when the actual connection has been initiated. Once we're // writable we check for `take_socket_error` to see if the connect // actually hit an error or not. // // If all that succeeded then we ship everything on up. if let Async::NotReady = stream.io.poll_write() { return Ok(Async::NotReady) } if let Some(e) = try!(stream.io.get_ref().take_error()) { return Err(e) } } match mem::replace(self, TcpStreamConnect::Empty) { TcpStreamConnect::Waiting(stream) => Ok(Async::Ready(stream)), TcpStreamConnect::Empty => panic!(), } } } #[cfg(unix)] mod sys { use std::os::unix::prelude::*; use super::{TcpStream, TcpListener}; impl AsRawFd for TcpStream { fn as_raw_fd(&self) -> RawFd { self.io.get_ref().as_raw_fd() } } impl AsRawFd for TcpListener { fn as_raw_fd(&self) -> RawFd { self.io.get_ref().as_raw_fd() } } } #[cfg(windows)] mod sys { // TODO: let's land these upstream with mio and then we can add them here. // // use std::os::windows::prelude::*; // use super::{TcpStream, TcpListener}; // // impl AsRawHandle for TcpStream { // fn as_raw_handle(&self) -> RawHandle { // self.io.get_ref().as_raw_handle() // } // } // // impl AsRawHandle for TcpListener { // fn as_raw_handle(&self) -> RawHandle { // self.listener.io().as_raw_handle() // } // } }