1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
//! `Future`-powered I/O at the core of Tokio //! //! This crate uses the `futures` crate to provide an event loop ("reactor //! core") which can be used to drive I/O like TCP and UDP, spawned future //! tasks, and other events like channels/timeouts. All asynchronous I/O is //! powered by the `mio` crate. //! //! The concrete types provided in this crate are relatively bare bones but are //! intended to be the essential foundation for further projects needing an //! event loop. In this crate you'll find: //! //! * TCP, both streams and listeners //! * UDP sockets //! * Message queues //! * Timeouts //! //! More functionality is likely to be added over time, but otherwise the crate //! is intended to be flexible, with the `PollEvented` type accepting any //! type that implements `mio::Evented`. For example, the `tokio-uds` crate //! uses `PollEvented` to provide support for Unix domain sockets. //! //! Some other important tasks covered by this crate are: //! //! * The ability to spawn futures into an event loop. The `Handle` and `Pinned` //! types have a `spawn` method which allows executing a future on an event //! loop. The `Pinned::spawn` method crucially does not require the future //! itself to be `Send`. //! //! * The `Io` trait serves as an abstraction for future crates to build on top //! of. This packages up `Read` and `Write` functionality as well as the //! ability to poll for readiness on both ends. //! //! * All I/O is futures-aware. If any action in this crate returns "not ready" //! or "would block", then the current future task is scheduled to receive a //! notification when it would otherwise make progress. //! //! # Examples //! //! A simple TCP echo server: //! //! ```no_run //! extern crate futures; //! extern crate tokio_core; //! //! use std::env; //! use std::net::SocketAddr; //! //! use futures::Future; //! use futures::stream::Stream; //! use tokio_core::io::{copy, Io}; //! use tokio_core::net::TcpListener; //! use tokio_core::reactor::Core; //! //! fn main() { //! let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string()); //! let addr = addr.parse::<SocketAddr>().unwrap(); //! //! // Create the event loop that will drive this server //! let mut l = Core::new().unwrap(); //! let handle = l.handle(); //! //! // Create a TCP listener which will listen for incoming connections //! let socket = TcpListener::bind(&addr, &handle).unwrap(); //! //! // Once we've got the TCP listener, inform that we have it //! println!("Listening on: {}", addr); //! //! // Pull out the stream of incoming connections and then for each new //! // one spin up a new task copying data. //! // //! // We use the `io::copy` future to copy all data from the //! // reading half onto the writing half. //! let done = socket.incoming().for_each(|(socket, addr)| { //! let pair = futures::lazy(|| Ok(socket.split())); //! let amt = pair.and_then(|(reader, writer)| copy(reader, writer)); //! //! // Once all that is done we print out how much we wrote, and then //! // critically we *spawn* this future which allows it to run //! // concurrently with other connections. //! handle.spawn(amt.then(move |result| { //! println!("wrote {:?} bytes to {}", result, addr); //! Ok(()) //! })); //! //! Ok(()) //! }); //! //! // Execute our server (modeled as a future) and wait for it to //! // complete. //! l.run(done).unwrap(); //! } //! ``` #![deny(missing_docs)] #[macro_use] extern crate futures; extern crate mio; extern crate slab; #[macro_use] extern crate scoped_tls; #[macro_use] extern crate log; #[macro_use] pub mod io; mod mpsc_queue; mod heap; pub mod channel; pub mod net; pub mod reactor;