1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
use std::io; use std::ops::{Deref, DerefMut}; use std::sync::Arc; use futures::{Async, Poll, Stream, Sink, StartSend, AsyncSink}; use io::Io; /// A reference counted buffer of bytes. /// /// An `EasyBuf` is a representation of a byte buffer where sub-slices of it can /// be handed out efficiently, each with a `'static` lifetime which keeps the /// data alive. The buffer also supports mutation but may require bytes to be /// copied to complete the operation. #[derive(Clone)] pub struct EasyBuf { buf: Arc<Vec<u8>>, start: usize, end: usize, } /// An RAII object returned from `get_mut` which provides mutable access to the /// underlying `Vec<u8>`. pub struct EasyBufMut<'a> { buf: &'a mut Vec<u8>, end: &'a mut usize, } impl EasyBuf { /// Creates a new EasyBuf with no data and the default capacity. pub fn new() -> EasyBuf { EasyBuf::with_capacity(8 * 1024) } /// Creates a new EasyBuf with `cap` capacity. pub fn with_capacity(cap: usize) -> EasyBuf { EasyBuf { buf: Arc::new(Vec::with_capacity(cap)), start: 0, end: 0, } } /// Changes the starting index of this window to the index specified. /// /// Returns the windows back to chain multiple calls to this method. /// /// # Panics /// /// This method will panic if `start` is out of bounds for the underlying /// slice or if it comes after the `end` configured in this window. fn set_start(&mut self, start: usize) -> &mut EasyBuf { assert!(start <= self.buf.as_ref().len()); assert!(start <= self.end); self.start = start; self } /// Changes the end index of this window to the index specified. /// /// Returns the windows back to chain multiple calls to this method. /// /// # Panics /// /// This method will panic if `end` is out of bounds for the underlying /// slice or if it comes after the `end` configured in this window. fn set_end(&mut self, end: usize) -> &mut EasyBuf { assert!(end <= self.buf.len()); assert!(self.start <= end); self.end = end; self } /// Returns the number of bytes contained in this `EasyBuf`. pub fn len(&self) -> usize { self.end - self.start } /// Returns the inner contents of this `EasyBuf` as a slice. pub fn as_slice(&self) -> &[u8] { self.as_ref() } /// Splits the buffer into two at the given index. /// /// Afterwards `self` contains elements `[0, at)`, and the returned `EasyBuf` /// contains elements `[at, len)`. /// /// This is an O(1) operation that just increases the reference count and /// sets a few indexes. /// /// # Panics /// /// Panics if `at > len` pub fn split_off(&mut self, at: usize) -> EasyBuf { let mut other = EasyBuf { buf: self.buf.clone(), ..*self }; let idx = self.start + at; other.set_start(idx); self.set_end(idx); return other } /// Splits the buffer into two at the given index. /// /// Afterwards `self` contains elements `[at, len)`, and the returned `EasyBuf` /// contains elements `[0, at)`. /// /// This is an O(1) operation that just increases the reference count and /// sets a few indexes. /// /// # Panics /// /// Panics if `at > len` pub fn drain_to(&mut self, at: usize) -> EasyBuf { let mut other = EasyBuf { buf: self.buf.clone(), ..*self }; let idx = self.start + at; other.set_end(idx); self.set_start(idx); return other } /// Returns a mutable reference to the underlying growable buffer of bytes. /// /// If this `EasyBuf` is the only instance pointing at the underlying buffer /// of bytes, a direct mutable reference will be returned. Otherwise the /// contents of this `EasyBuf` will be reallocated in a fresh `Vec<u8>` /// allocation with the same capacity as this allocation, and that /// allocation will be returned. /// /// This operation **is not O(1)** as it may clone the entire contents of /// this buffer. /// /// The returned `EasyBufMut` type implement `Deref` and `DerefMut` to /// `Vec<u8>` can the byte buffer can be manipulated using the standard /// `Vec<u8>` methods. pub fn get_mut(&mut self) -> EasyBufMut { // Fast path if we can get mutable access to our own current // buffer. // // TODO: this should be a match or an if-let if Arc::get_mut(&mut self.buf).is_some() { let buf = Arc::get_mut(&mut self.buf).unwrap(); buf.drain(..self.start); self.start = 0; return EasyBufMut { buf: buf, end: &mut self.end } } // If we couldn't get access above then we give ourself a new buffer // here. let mut v = Vec::with_capacity(self.buf.capacity()); v.extend_from_slice(self.as_ref()); self.start = 0; self.buf = Arc::new(v); EasyBufMut { buf: Arc::get_mut(&mut self.buf).unwrap(), end: &mut self.end, } } } impl AsRef<[u8]> for EasyBuf { fn as_ref(&self) -> &[u8] { &self.buf[self.start..self.end] } } impl<'a> Deref for EasyBufMut<'a> { type Target = Vec<u8>; fn deref(&self) -> &Vec<u8> { self.buf } } impl<'a> DerefMut for EasyBufMut<'a> { fn deref_mut(&mut self) -> &mut Vec<u8> { self.buf } } impl From<Vec<u8>> for EasyBuf { fn from(vec: Vec<u8>) -> EasyBuf { let end = vec.len(); EasyBuf { buf: Arc::new(vec), start: 0, end: end, } } } impl<'a> Drop for EasyBufMut<'a> { fn drop(&mut self) { *self.end = self.buf.len(); } } /// Encoding and decoding of frames via buffers. /// /// This trait is used when constructing an instance of `Framed`. It provides /// two types: `In`, for decoded input frames, and `Out`, for outgoing frames /// that need to be encoded. It also provides methods to actually perform the /// encoding and decoding, which work with corresponding buffer types. /// /// The trait itself is implemented on a type that can track state for decoding /// or encoding, which is particularly useful for streaming parsers. In many /// cases, though, this type will simply be a unit struct (e.g. `struct /// HttpCodec`). pub trait Codec { /// The type of decoded frames. type In; /// The type of frames to be encoded. type Out; /// Attempts to decode a frame from the provided buffer of bytes. /// /// This method is called by `Framed` whenever bytes are ready to be parsed. /// The provided buffer of bytes is what's been read so far, and this /// instance of `Decode` can determine whether an entire frame is in the /// buffer and is ready to be returned. /// /// If an entire frame is available, then this instance will remove those /// bytes from the buffer provided and return them as a decoded /// frame. Note that removing bytes from the provided buffer doesn't always /// necessarily copy the bytes, so this should be an efficient operation in /// most circumstances. /// /// If the bytes look valid, but a frame isn't fully available yet, then /// `Ok(None)` is returned. This indicates to the `Framed` instance that /// it needs to read some more bytes before calling this method again. /// /// Finally, if the bytes in the buffer are malformed then an error is /// returned indicating why. This informs `Framed` that the stream is now /// corrupt and should be terminated. fn decode(&mut self, buf: &mut EasyBuf) -> Result<Option<Self::In>, io::Error>; /// A default method available to be called when there are no more bytes /// available to be read from the underlying I/O. /// /// This method defaults to calling `decode` and returns an error if /// `Ok(None)` is returned. Typically this doesn't need to be implemented /// unless the framing protocol differs near the end of the stream. fn decode_eof(&mut self, buf: &mut EasyBuf) -> io::Result<Self::In> { match try!(self.decode(buf)) { Some(frame) => Ok(frame), None => Err(io::Error::new(io::ErrorKind::Other, "bytes remaining on stream")), } } /// Encodes a frame into the buffer provided. /// /// This method will encode `msg` into the byte buffer provided by `buf`. /// The `buf` provided is an internal buffer of the `Framed` instance and /// will be written out when possible. fn encode(&mut self, msg: Self::Out, buf: &mut Vec<u8>) -> io::Result<()>; } /// A unified `Stream` and `Sink` interface to an underlying `Io` object, using /// the `Encode` and `Decode` traits to encode and decode frames. /// /// You can acquire a `Framed` instance by using the `Io::framed` adapter. pub struct Framed<T, C> { upstream: T, codec: C, eof: bool, is_readable: bool, rd: EasyBuf, wr: Vec<u8>, } impl<T: Io, C: Codec> Stream for Framed<T, C> { type Item = C::In; type Error = io::Error; fn poll(&mut self) -> Poll<Option<C::In>, io::Error> { loop { // If the read buffer has any pending data, then it could be // possible that `decode` will return a new frame. We leave it to // the decoder to optimize detecting that more data is required. if self.is_readable { if self.eof { if self.rd.len() == 0 { return Ok(None.into()) } else { let frame = try!(self.codec.decode_eof(&mut self.rd)); return Ok(Async::Ready(Some(frame))) } } trace!("attempting to decode a frame"); if let Some(frame) = try!(self.codec.decode(&mut self.rd)) { trace!("frame decoded from buffer"); return Ok(Async::Ready(Some(frame))); } self.is_readable = false; } assert!(!self.eof); // Otherwise, try to read more data and try again // // TODO: shouldn't read_to_end, that may read a lot let before = self.rd.len(); let ret = self.upstream.read_to_end(&mut self.rd.get_mut()); match ret { Ok(_n) => self.eof = true, Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { if self.rd.len() == before { return Ok(Async::NotReady) } } Err(e) => return Err(e), } self.is_readable = true; } } } impl<T: Io, C: Codec> Sink for Framed<T, C> { type SinkItem = C::Out; type SinkError = io::Error; fn start_send(&mut self, item: C::Out) -> StartSend<C::Out, io::Error> { // If the buffer is already over 8KiB, then attempt to flush it. If after flushing it's // *still* over 8KiB, then apply backpressure (reject the send). if self.wr.len() > 8 * 1024 { try!(self.poll_complete()); if self.wr.len() > 8 * 1024 { return Ok(AsyncSink::NotReady(item)); } } try!(self.codec.encode(item, &mut self.wr)); Ok(AsyncSink::Ready) } fn poll_complete(&mut self) -> Poll<(), io::Error> { trace!("flushing framed transport"); while !self.wr.is_empty() { trace!("writing; remaining={}", self.wr.len()); let n = try_nb!(self.upstream.write(&self.wr)); if n == 0 { return Err(io::Error::new(io::ErrorKind::WriteZero, "failed to write frame to transport")); } self.wr.drain(..n); } // Try flushing the underlying IO try_nb!(self.upstream.flush()); trace!("framed transport flushed"); return Ok(Async::Ready(())); } } pub fn framed<T, C>(io: T, codec: C) -> Framed<T, C> { Framed { upstream: io, codec: codec, eof: false, is_readable: false, rd: EasyBuf::new(), wr: Vec::with_capacity(8 * 1024), } } impl<T, C> Framed<T, C> { /// Returns a reference to the underlying I/O stream wrapped by `Framed`. /// /// Note that care should be taken to not tamper with the underlying stream /// of data coming in as it may corrupt the stream of frames otherwise being /// worked with. pub fn get_ref(&self) -> &T { &self.upstream } /// Returns a mutable reference to the underlying I/O stream wrapped by /// `Framed`. /// /// Note that care should be taken to not tamper with the underlying stream /// of data coming in as it may corrupt the stream of frames otherwise being /// worked with. pub fn get_mut(&mut self) -> &mut T { &mut self.upstream } /// Consumes the `Framed`, returning its underlying I/O stream. /// /// Note that care should be taken to not tamper with the underlying stream /// of data coming in as it may corrupt the stream of frames otherwise being /// worked with. pub fn into_inner(self) -> T { self.upstream } }