1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use libc::{c_void, c_char, c_int};
use std::ptr;
use std::mem;
use ffi;
use {cvt, cvt_p};
use bio::MemBioSlice;
use dh::Dh;
use dsa::Dsa;
use ec::EcKey;
use rsa::Rsa;
use error::ErrorStack;
use util::{CallbackState, invoke_passwd_cb_old};
use types::{OpenSslType, OpenSslTypeRef};
type_!(PKey, PKeyRef, ffi::EVP_PKEY, ffi::EVP_PKEY_free);
impl PKeyRef {
pub fn rsa(&self) -> Result<Rsa, ErrorStack> {
unsafe {
let rsa = try!(cvt_p(ffi::EVP_PKEY_get1_RSA(self.as_ptr())));
Ok(Rsa::from_ptr(rsa))
}
}
pub fn dsa(&self) -> Result<Dsa, ErrorStack> {
unsafe {
let dsa = try!(cvt_p(ffi::EVP_PKEY_get1_DSA(self.as_ptr())));
Ok(Dsa::from_ptr(dsa))
}
}
pub fn dh(&self) -> Result<Dh, ErrorStack> {
unsafe {
let dh = try!(cvt_p(ffi::EVP_PKEY_get1_DH(self.as_ptr())));
Ok(Dh::from_ptr(dh))
}
}
pub fn ec_key(&self) -> Result<EcKey, ErrorStack> {
unsafe {
let ec_key = try!(cvt_p(ffi::EVP_PKEY_get1_EC_KEY(self.as_ptr())));
Ok(EcKey::from_ptr(ec_key))
}
}
public_key_to_pem!(ffi::PEM_write_bio_PUBKEY);
private_key_to_pem!(ffi::PEM_write_bio_PKCS8PrivateKey);
private_key_to_der!(ffi::i2d_PrivateKey);
public_key_to_der!(ffi::i2d_PUBKEY);
pub fn bits(&self) -> u32 {
unsafe { ffi::EVP_PKEY_bits(self.as_ptr()) as u32 }
}
pub fn public_eq(&self, other: &PKeyRef) -> bool {
unsafe { ffi::EVP_PKEY_cmp(self.as_ptr(), other.as_ptr()) == 1 }
}
}
unsafe impl Send for PKey {}
unsafe impl Sync for PKey {}
impl PKey {
pub fn from_rsa(rsa: Rsa) -> Result<PKey, ErrorStack> {
unsafe {
let evp = try!(cvt_p(ffi::EVP_PKEY_new()));
let pkey = PKey(evp);
try!(cvt(ffi::EVP_PKEY_assign(pkey.0, ffi::EVP_PKEY_RSA, rsa.as_ptr() as *mut _)));
mem::forget(rsa);
Ok(pkey)
}
}
pub fn from_dsa(dsa: Dsa) -> Result<PKey, ErrorStack> {
unsafe {
let evp = try!(cvt_p(ffi::EVP_PKEY_new()));
let pkey = PKey(evp);
try!(cvt(ffi::EVP_PKEY_assign(pkey.0, ffi::EVP_PKEY_DSA, dsa.as_ptr() as *mut _)));
mem::forget(dsa);
Ok(pkey)
}
}
pub fn from_dh(dh: Dh) -> Result<PKey, ErrorStack> {
unsafe {
let evp = try!(cvt_p(ffi::EVP_PKEY_new()));
let pkey = PKey(evp);
try!(cvt(ffi::EVP_PKEY_assign(pkey.0, ffi::EVP_PKEY_DH, dh.as_ptr() as *mut _)));
mem::forget(dh);
Ok(pkey)
}
}
pub fn from_ec_key(ec_key: EcKey) -> Result<PKey, ErrorStack> {
unsafe {
let evp = try!(cvt_p(ffi::EVP_PKEY_new()));
let pkey = PKey(evp);
try!(cvt(ffi::EVP_PKEY_assign(pkey.0, ffi::EVP_PKEY_EC, ec_key.as_ptr() as *mut _)));
mem::forget(ec_key);
Ok(pkey)
}
}
pub fn hmac(key: &[u8]) -> Result<PKey, ErrorStack> {
unsafe {
assert!(key.len() <= c_int::max_value() as usize);
let key = try!(cvt_p(ffi::EVP_PKEY_new_mac_key(ffi::EVP_PKEY_HMAC,
ptr::null_mut(),
key.as_ptr() as *const _,
key.len() as c_int)));
Ok(PKey(key))
}
}
private_key_from_pem!(PKey, ffi::PEM_read_bio_PrivateKey);
public_key_from_pem!(PKey, ffi::PEM_read_bio_PUBKEY);
#[deprecated(since = "0.9.2", note = "use private_key_from_pem_callback")]
pub fn private_key_from_pem_cb<F>(buf: &[u8], pass_cb: F) -> Result<PKey, ErrorStack>
where F: FnOnce(&mut [c_char]) -> usize
{
ffi::init();
let mut cb = CallbackState::new(pass_cb);
let mem_bio = try!(MemBioSlice::new(buf));
unsafe {
let evp = try!(cvt_p(ffi::PEM_read_bio_PrivateKey(mem_bio.as_ptr(),
ptr::null_mut(),
Some(invoke_passwd_cb_old::<F>),
&mut cb as *mut _ as *mut c_void)));
Ok(PKey::from_ptr(evp))
}
}
}
#[cfg(test)]
mod tests {
use symm::Cipher;
use dh::Dh;
use dsa::Dsa;
use ec::EcKey;
use rsa::Rsa;
use nid;
use super::*;
#[test]
fn test_to_password() {
let rsa = Rsa::generate(2048).unwrap();
let pkey = PKey::from_rsa(rsa).unwrap();
let pem = pkey.private_key_to_pem_passphrase(Cipher::aes_128_cbc(), b"foobar").unwrap();
PKey::private_key_from_pem_passphrase(&pem, b"foobar").unwrap();
assert!(PKey::private_key_from_pem_passphrase(&pem, b"fizzbuzz").is_err());
}
#[test]
fn test_private_key_from_pem() {
let key = include_bytes!("../test/key.pem");
PKey::private_key_from_pem(key).unwrap();
}
#[test]
fn test_public_key_from_pem() {
let key = include_bytes!("../test/key.pem.pub");
PKey::public_key_from_pem(key).unwrap();
}
#[test]
fn test_pem() {
let key = include_bytes!("../test/key.pem");
let key = PKey::private_key_from_pem(key).unwrap();
let priv_key = key.private_key_to_pem().unwrap();
let pub_key = key.public_key_to_pem().unwrap();
assert!(priv_key.windows(11).any(|s| s == b"PRIVATE KEY"));
assert!(pub_key.windows(10).any(|s| s == b"PUBLIC KEY"));
}
#[test]
fn test_rsa_accessor() {
let rsa = Rsa::generate(2048).unwrap();
let pkey = PKey::from_rsa(rsa).unwrap();
pkey.rsa().unwrap();
assert!(pkey.dsa().is_err());
}
#[test]
fn test_dsa_accessor() {
let dsa = Dsa::generate(2048).unwrap();
let pkey = PKey::from_dsa(dsa).unwrap();
pkey.dsa().unwrap();
assert!(pkey.rsa().is_err());
}
#[test]
fn test_dh_accessor() {
let dh = include_bytes!("../test/dhparams.pem");
let dh = Dh::from_pem(dh).unwrap();
let pkey = PKey::from_dh(dh).unwrap();
pkey.dh().unwrap();
assert!(pkey.rsa().is_err());
}
#[test]
fn test_ec_key_accessor() {
let ec_key = EcKey::from_curve_name(nid::X9_62_PRIME256V1).unwrap();
let pkey = PKey::from_ec_key(ec_key).unwrap();
pkey.ec_key().unwrap();
assert!(pkey.rsa().is_err());
}
}