1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
//! A multi-producer, single-consumer, futures-aware, FIFO queue with back pressure. //! //! A channel can be used as a communication primitive between tasks running on //! `futures-rs` executors. Channel creation provides `Receiver` and `Sender` //! handles. `Receiver` implements `Stream` and allows a task to read values //! out of the channel. If there is no message to read from the channel, the //! curernt task will be notified when a new value is sent. `Sender` implements //! the `Sink` trait and allows a task to send messages into the channel. If //! the channel is at capacity, then send will be rejected and the task will be //! notified when additional capacity is available. //! //! # Disconnection //! //! When all `Sender` handles have been dropped, it is no longer possible to //! send values into the channel. This is considered the termination event of //! the stream. As such, `Sender::poll` will return `Ok(Ready(None))`. //! //! If the receiver handle is dropped, then messages can no longer be read out //! of the channel. In this case, a `send` will result in an error. //! //! # Clean Shutdown //! //! If the `Receiver` is simply dropped, then it is possible for there to be //! messages still in the channel that will not be processed. As such, it is //! usually desirable to perform a "clean" shutdown. To do this, the receiver //! will first call `close`, which will prevent any further messages to be sent //! into the channel. Then, the receiver consumes the channel to completion, at //! which point the receiver can be dropped. // At the core, the channel uses an atomic FIFO queue for message passing. This // queue is used as the primary coordination primitive. In order to enforce // capacity limits and handle back pressure, a secondary FIFO queue is used to // send parked task handles. // // The general idea is that the channel is created with a `buffer` size of `n`. // The channel capacity is `n + num-senders`. Each sender gets one "guaranteed" // slot to hold a message. This allows `Sender` to know for a fact that a send // will succeed *before* starting to do the actual work of sending the value. // Since most of this work is lock-free, once the work starts, it is impossible // to safely revert. // // If the sender is unable to process a send operation, then the the curren // task is parked and the handle is sent on the parked task queue. // // Note that the implementation guarantees that the channel capacity will never // exceed the configured limit, however there is no *strict* guarantee that the // receiver will wake up a parked task *immediately* when a slot becomes // available. However, it will almost always unpark a task when a slot becomes // available and it is *guaranteed* that a sender will be unparked when the // message that caused the sender to become parked is read out of the channel. // // The steps for sending a message are roughly: // // 1) Increment the channel message count // 2) If the channel is at capacity, push the task handle onto the wait queue // 3) Push the message onto the message queue. // // The steps for receiving a message are roughly: // // 1) Pop a message from the message queue // 2) Pop a task handle from the wait queue // 3) Decrement the channel message count. // // It's important for the order of operations on lock-free structures to happen // in reverse order between the sender and receiver. This makes the message // queue the primary coordination structure and establishes the necessary // happens-before semantics required for the acquire / release semantics used // by the queue structure. use std::any::Any; use std::error::Error; use std::fmt; use std::sync::atomic::AtomicUsize; use std::sync::atomic::Ordering::SeqCst; use std::sync::{Arc, Mutex}; use std::thread; use std::usize; use sync::mpsc::queue::{Queue, PopResult}; use task::{self, Task}; use {Async, AsyncSink, Poll, StartSend, Sink, Stream}; mod queue; /// The transmission end of a channel which is used to send values. /// /// This is created by the `channel` method. pub struct Sender<T> { // Channel state shared between the sender and receiver. inner: Arc<Inner<T>>, // Handle to the task that is blocked on this sender. This handle is sent // to the receiver half in order to be notified when the sender becomes // unblocked. sender_task: SenderTask, // True if the sender might be blocked. This is an optimization to avoid // having to lock the mutex most of the time. maybe_parked: bool, } /// The transmission end of a channel which is used to send values. /// /// This is created by the `unbounded` method. pub struct UnboundedSender<T>(Sender<T>); /// The receiving end of a channel which implements the `Stream` trait. /// /// This is a concrete implementation of a stream which can be used to represent /// a stream of values being computed elsewhere. This is created by the /// `channel` method. pub struct Receiver<T> { inner: Arc<Inner<T>>, } /// The receiving end of a channel which implements the `Stream` trait. /// /// This is a concrete implementation of a stream which can be used to represent /// a stream of values being computed elsewhere. This is created by the /// `unbounded` method. pub struct UnboundedReceiver<T>(Receiver<T>); /// Error type for sending, used when the receiving end of the channel is /// dropped pub struct SendError<T>(T); impl<T> fmt::Debug for SendError<T> { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_tuple("SendError") .field(&"...") .finish() } } impl<T> fmt::Display for SendError<T> { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "send failed because receiver is gone") } } impl<T> Error for SendError<T> where T: Any { fn description(&self) -> &str { "send failed because receiver is gone" } } impl<T> SendError<T> { /// Returns the message that was attempted to be sent but failed. pub fn into_inner(self) -> T { self.0 } } struct Inner<T> { // Max buffer size of the channel. If `None` then the channel is unbounded. buffer: Option<usize>, // Internal channel state. Consists of the number of messages stored in the // channel as well as a flag signalling that the channel is closed. state: AtomicUsize, // Atomic, FIFO queue used to send messages to the receiver message_queue: Queue<Option<T>>, // Atomic, FIFO queue used to send parked task handles to the receiver. parked_queue: Queue<SenderTask>, // Number of senders in existence num_senders: AtomicUsize, // Handle to the receiver's task. recv_task: Mutex<ReceiverTask>, } // Struct representation of `Inner::state`. #[derive(Debug, Clone, Copy)] struct State { // `true` when the channel is open is_open: bool, // Number of messages in the channel num_messages: usize, } struct ReceiverTask { unparked: bool, task: Option<Task>, } // Returned from Receiver::try_park() enum TryPark { Parked, Closed, NotEmpty, } // The `is_open` flag is stored in the left-most bit of `Inner::state` const OPEN_MASK: usize = 1 << 31; // When a new channel is created, it is created in the open state with no // pending messages. const INIT_STATE: usize = OPEN_MASK; // The maximum number of messages that a channel can track is `usize::MAX > 1` const MAX_CAPACITY: usize = !(OPEN_MASK); // The maximum requested buffer size must be less than the maximum capacity of // a channel. This is because each sender gets a guaranteed slot. const MAX_BUFFER: usize = MAX_CAPACITY >> 1; // Sent to the consumer to wake up blocked producers type SenderTask = Arc<Mutex<Option<Task>>>; /// Creates an in-memory channel implementation of the `Stream` trait with /// bounded capacity. /// /// This method creates a concrete implementation of the `Stream` trait which /// can be used to send values across threads in a streaming fashion. This /// channel is unique in that it implements back pressure to ensure that the /// sender never outpaces the receiver. The channel capacity is equal to /// `buffer + num-senders`. In other words, each sender gets a guaranteed slot /// in the channel capacity, and on top of that there are `buffer` "first come, /// first serve" slots available to all senders. /// /// The `Receiver` returned implements the `Stream` trait and has access to any /// number of the associated combinators for transforming the result. pub fn channel<T>(buffer: usize) -> (Sender<T>, Receiver<T>) { // Check that the requested buffer size does not exceed the maximum buffer // size permitted by the system. assert!(buffer < MAX_BUFFER, "requested buffer size too large"); channel2(Some(buffer)) } /// Creates an in-memory channel implementation of the `Stream` trait with /// unbounded capacity. /// /// This method creates a concrete implementation of the `Stream` trait which /// can be used to send values across threads in a streaming fashion. A `send` /// on this channel will always succeed as long as the receive half has not /// been closed. If the receiver falls behind, messages will be buffered /// internally. /// /// **Note** that the amount of available system memory is an implicit bound to /// the channel. Using an `unbounded` channel has the ability of causing the /// process to run out of memory. In this case, the process will be aborted. pub fn unbounded<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) { let (tx, rx) = channel2(None); (UnboundedSender(tx), UnboundedReceiver(rx)) } fn channel2<T>(buffer: Option<usize>) -> (Sender<T>, Receiver<T>) { let inner = Arc::new(Inner { buffer: buffer, state: AtomicUsize::new(INIT_STATE), message_queue: Queue::new(), parked_queue: Queue::new(), num_senders: AtomicUsize::new(1), recv_task: Mutex::new(ReceiverTask { unparked: false, task: None, }), }); let tx = Sender { inner: inner.clone(), sender_task: Arc::new(Mutex::new(None)), maybe_parked: false, }; let rx = Receiver { inner: inner, }; (tx, rx) } /* * * ===== impl Sender ===== * */ impl<T> Sender<T> { // Do the send without failing fn do_send(&mut self, msg: Option<T>, can_park: bool) -> Result<(), SendError<T>> { // First, increment the number of messages contained by the channel. // This operation will also atomically determine if the sender task // should be parked. // // None is returned in the case that the channel has been closed by the // receiver. This happens when `Receiver::close` is called or the // receiver is dropped. let park_self = match self.inc_num_messages(msg.is_none()) { Some(park_self) => park_self, None => { // The receiver has closed the channel. Only abort if actually // sending a message. It is important that the stream // termination (None) is always sent. This technically means // that it is possible for the queue to contain the following // number of messages: // // num-senders + buffer + 1 // if let Some(msg) = msg { return Err(SendError(msg)); } else { return Ok(()); } } }; // If the channel has reached capacity, then the sender task needs to // be parked. This will send the task handle on the parked task queue. // // However, when `do_send` is called while dropping the `Sender`, // `task::park()` can't be called safely. In this case, in order to // maintain internal consistency, a blank message is pushed onto the // parked task queue. if park_self { self.park(can_park); } // Push the message onto the message queue self.inner.message_queue.push(msg); // Signal to the receiver that a message has been enqueued. If the // receiver is parked, this will unpark the task. self.signal(); Ok(()) } // Increment the number of queued messages. Returns if the sender should // block. fn inc_num_messages(&self, close: bool) -> Option<bool> { let mut curr = self.inner.state.load(SeqCst); loop { let mut state = decode_state(curr); // The receiver end closed the channel. if !state.is_open { return None; } // This probably is never hit? Odds are the process will run out of // memory first. It may be worth to return something else in this // case? assert!(state.num_messages < MAX_CAPACITY, "buffer space exhausted; \ sending this messages would overflow the state"); state.num_messages += 1; // The channel is closed by all sender handles being dropped. if close { state.is_open = false; } let next = encode_state(&state); match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) { Ok(_) => { // Block if the current number of pending messages has exceeded // the configured buffer size let park_self = match self.inner.buffer { Some(buffer) => state.num_messages > buffer, None => false, }; return Some(park_self) } Err(actual) => curr = actual, } } } // Signal to the receiver task that a message has been enqueued fn signal(&mut self) { // TODO // This logic can probably be improved by guarding the lock with an // atomic. // // Do this step first so that the lock is dropped when // `unpark` is called let task = { let mut recv_task = self.inner.recv_task.lock().unwrap(); // If the receiver has already been unparked, then there is nothing // more to do if recv_task.unparked { return; } // Setting this flag enables the receiving end to detect that // an unpark event happened in order to avoid unecessarily // parking. recv_task.unparked = true; recv_task.task.take() }; if let Some(task) = task { task.unpark(); } } fn park(&mut self, can_park: bool) { // TODO: clean up internal state if the task::park will fail let task = if can_park { Some(task::park()) } else { None }; *self.sender_task.lock().unwrap() = task; // Send handle over queue let t = self.sender_task.clone(); self.inner.parked_queue.push(t); // Check to make sure we weren't closed after we sent our task on the // queue let state = decode_state(self.inner.state.load(SeqCst)); self.maybe_parked = state.is_open; } fn poll_unparked(&mut self) -> Async<()> { // First check the `maybe_parked` variable. This avoids acquiring the // lock in most cases if self.maybe_parked { // Get a lock on the task handle let mut task = self.sender_task.lock().unwrap(); if task.is_none() { self.maybe_parked = false; return Async::Ready(()) } // At this point, an unpark request is pending, so there will be an // unpark sometime in the future. We just need to make sure that // the correct task will be notified. // // Update the task in case the `Sender` has been moved to another // task *task = Some(task::park()); Async::NotReady } else { Async::Ready(()) } } } impl<T> Sink for Sender<T> { type SinkItem = T; type SinkError = SendError<T>; fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> { // If the sender is currently blocked, reject the message before doing // any work. if !self.poll_unparked().is_ready() { return Ok(AsyncSink::NotReady(msg)); } // The channel has capacity to accept the message, so send it. try!(self.do_send(Some(msg), true)); Ok(AsyncSink::Ready) } fn poll_complete(&mut self) -> Poll<(), SendError<T>> { Ok(Async::Ready(())) } } impl<T> UnboundedSender<T> { /// Sends the provided message along this channel. /// /// This is an unbounded sender, so this function differs from `Sink::send` /// by ensuring the return type reflects that the channel is always ready to /// receive messages. pub fn send(&mut self, msg: T) -> Result<(), SendError<T>> { match self.0.start_send(msg) { Ok(AsyncSink::Ready) => Ok(()), Ok(AsyncSink::NotReady(_)) => panic!(), Err(e) => Err(e), } } } impl<T> Sink for UnboundedSender<T> { type SinkItem = T; type SinkError = SendError<T>; fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> { self.0.start_send(msg) } fn poll_complete(&mut self) -> Poll<(), SendError<T>> { self.0.poll_complete() } } impl<T> Clone for UnboundedSender<T> { fn clone(&self) -> UnboundedSender<T> { UnboundedSender(self.0.clone()) } } impl<T> Clone for Sender<T> { fn clone(&self) -> Sender<T> { // Since this atomic op isn't actually guarding any memory and we don't // care about any orderings besides the ordering on the single atomic // variable, a relaxed ordering is acceptable. let mut curr = self.inner.num_senders.load(SeqCst); loop { // If the maximum number of senders has been reached, then fail if curr == self.inner.max_senders() { panic!("cannot clone `Sender` -- too many outstanding senders"); } debug_assert!(curr < self.inner.max_senders()); let next = curr + 1; let actual = self.inner.num_senders.compare_and_swap(curr, next, SeqCst); // The ABA problem doesn't matter here. We only care that the // number of senders never exceeds the maximum. if actual == curr { return Sender { inner: self.inner.clone(), sender_task: Arc::new(Mutex::new(None)), maybe_parked: false, }; } curr = actual; } } } impl<T> Drop for Sender<T> { fn drop(&mut self) { // Ordering between variables don't matter here let prev = self.inner.num_senders.fetch_sub(1, SeqCst); if prev == 1 { let _ = self.do_send(None, false); } } } /* * * ===== impl Receiver ===== * */ impl<T> Receiver<T> { /// Closes the receiving half /// /// This prevents any further messages from being sent on the channel while /// still enabling the receiver to drain messages that are buffered. pub fn close(&mut self) { let mut curr = self.inner.state.load(SeqCst); loop { let mut state = decode_state(curr); if !state.is_open { break } state.is_open = false; let next = encode_state(&state); match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) { Ok(_) => break, Err(actual) => curr = actual, } } // Wake up any threads waiting as they'll see that we've closed the // channel and will continue on their merry way. loop { match unsafe { self.inner.parked_queue.pop() } { PopResult::Data(task) => { let task = task.lock().unwrap().take(); if let Some(task) = task { task.unpark(); } } PopResult::Empty => break, PopResult::Inconsistent => thread::yield_now(), } } } fn next_message(&mut self) -> Async<Option<T>> { // Pop off a message loop { match unsafe { self.inner.message_queue.pop() } { PopResult::Data(msg) => { return Async::Ready(msg); } PopResult::Empty => { // The queue is empty, return NotReady return Async::NotReady; } PopResult::Inconsistent => { // Inconsistent means that there will be a message to pop // in a short time. This branch can only be reached if // values are being produced from another thread, so there // are a few ways that we can deal with this: // // 1) Spin // 2) thread::yield_now() // 3) task::park().unwrap() & return NotReady // // For now, thread::yield_now() is used, but it would // probably be better to spin a few times then yield. thread::yield_now(); } } } } // Unpark a single task handle if there is one pending in the parked queue fn unpark_one(&mut self) { loop { match unsafe { self.inner.parked_queue.pop() } { PopResult::Data(task) => { // Do this step first so that the lock is dropped when // `unpark` is called let task = task.lock().unwrap().take(); if let Some(task) = task { task.unpark(); } return; } PopResult::Empty => { // Queue empty, no task to wake up. return; } PopResult::Inconsistent => { // Same as above thread::yield_now(); } } } } // Try to park the receiver task fn try_park(&self) -> TryPark { let curr = self.inner.state.load(SeqCst); let state = decode_state(curr); // If the channel is closed, then there is no need to park. if !state.is_open && state.num_messages == 0 { return TryPark::Closed; } // First, track the task in the `recv_task` slot let mut recv_task = self.inner.recv_task.lock().unwrap(); if recv_task.unparked { // Consume the `unpark` signal without actually parking recv_task.unparked = false; return TryPark::NotEmpty; } recv_task.task = Some(task::park()); TryPark::Parked } fn dec_num_messages(&self) { let mut curr = self.inner.state.load(SeqCst); loop { let mut state = decode_state(curr); state.num_messages -= 1; let next = encode_state(&state); match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) { Ok(_) => break, Err(actual) => curr = actual, } } } } impl<T> Stream for Receiver<T> { type Item = T; type Error = (); fn poll(&mut self) -> Poll<Option<T>, ()> { loop { // Try to read a message off of the message queue. let msg = match self.next_message() { Async::Ready(msg) => msg, Async::NotReady => { // There are no messages to read, in this case, attempt to // park. The act of parking will verify that the channel is // still empty after the park operation has completed. match self.try_park() { TryPark::Parked => { // The task was parked, and the channel is still // empty, return NotReady. return Ok(Async::NotReady); } TryPark::Closed => { // The channel is closed, there will be no further // messages. return Ok(Async::Ready(None)); } TryPark::NotEmpty => { // A message has been sent while attempting to // park. Loop again, the next iteration is // guaranteed to get the message. continue; } } } }; // If there are any parked task handles in the parked queue, pop // one and unpark it. self.unpark_one(); // Decrement number of messages self.dec_num_messages(); // Return the message return Ok(Async::Ready(msg)); } } } impl<T> Drop for Receiver<T> { fn drop(&mut self) { // Drain the channel of all pending messages self.close(); while self.next_message().is_ready() { // ... } } } impl<T> UnboundedReceiver<T> { /// Closes the receiving half /// /// This prevents any further messages from being sent on the channel while /// still enabling the receiver to drain messages that are buffered. pub fn close(&mut self) { self.0.close(); } } impl<T> Stream for UnboundedReceiver<T> { type Item = T; type Error = (); fn poll(&mut self) -> Poll<Option<T>, ()> { self.0.poll() } } /* * * ===== impl Inner ===== * */ impl<T> Inner<T> { // The return value is such that the total number of messages that can be // enqueued into the channel will never exceed MAX_CAPACITY fn max_senders(&self) -> usize { match self.buffer { Some(buffer) => MAX_CAPACITY - buffer, None => MAX_BUFFER, } } } unsafe impl<T: Send> Send for Inner<T> {} unsafe impl<T: Send> Sync for Inner<T> {} /* * * ===== Helpers ===== * */ fn decode_state(num: usize) -> State { State { is_open: num & OPEN_MASK == OPEN_MASK, num_messages: num & MAX_CAPACITY, } } fn encode_state(state: &State) -> usize { let mut num = state.num_messages; if state.is_open { num |= OPEN_MASK; } num }