1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
//! Futures //! //! This module contains the `Future` trait and a number of adaptors for this //! trait. See the crate docs, and the docs for `Future`, for full detail. use core::result; // Primitive futures mod empty; mod lazy; mod poll_fn; #[path = "result.rs"] mod result_; pub use self::empty::{empty, Empty}; pub use self::lazy::{lazy, Lazy}; pub use self::poll_fn::{poll_fn, PollFn}; pub use self::result_::{result, ok, err, FutureResult}; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use `ok` instead")] #[cfg(feature = "with-deprecated")] pub use self::{ok as finished, Ok as Finished}; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use `err` instead")] #[cfg(feature = "with-deprecated")] pub use self::{err as failed, Err as Failed}; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use `result` instead")] #[cfg(feature = "with-deprecated")] pub use self::{result as done, FutureResult as Done}; #[doc(hidden)] #[deprecated(since = "0.1.7", note = "use `FutureResult` instead")] #[cfg(feature = "with-deprecated")] pub use self::{FutureResult as Ok}; #[doc(hidden)] #[deprecated(since = "0.1.7", note = "use `FutureResult` instead")] #[cfg(feature = "with-deprecated")] pub use self::{FutureResult as Err}; // combinators mod and_then; mod flatten; mod flatten_stream; mod fuse; mod into_stream; mod join; mod map; mod map_err; mod from_err; mod or_else; mod select; mod then; mod either; // impl details mod chain; pub use self::and_then::AndThen; pub use self::flatten::Flatten; pub use self::flatten_stream::FlattenStream; pub use self::fuse::Fuse; pub use self::into_stream::IntoStream; pub use self::join::{Join, Join3, Join4, Join5}; pub use self::map::Map; pub use self::map_err::MapErr; pub use self::from_err::FromErr; pub use self::or_else::OrElse; pub use self::select::{Select, SelectNext}; pub use self::then::Then; pub use self::either::Either; if_std! { mod catch_unwind; mod join_all; mod select_all; mod select_ok; mod shared; pub use self::catch_unwind::CatchUnwind; pub use self::join_all::{join_all, JoinAll}; pub use self::select_all::{SelectAll, SelectAllNext, select_all}; pub use self::select_ok::{SelectOk, select_ok}; pub use self::shared::Shared; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use join_all instead")] #[cfg(feature = "with-deprecated")] pub use self::join_all::join_all as collect; #[doc(hidden)] #[deprecated(since = "0.1.4", note = "use JoinAll instead")] #[cfg(feature = "with-deprecated")] pub use self::join_all::JoinAll as Collect; /// A type alias for `Box<Future + Send>` pub type BoxFuture<T, E> = ::std::boxed::Box<Future<Item = T, Error = E> + Send>; impl<F: ?Sized + Future> Future for ::std::boxed::Box<F> { type Item = F::Item; type Error = F::Error; fn poll(&mut self) -> Poll<Self::Item, Self::Error> { (**self).poll() } } } use {Poll, stream}; /// Trait for types which are a placeholder of a value that will become /// available at possible some later point in time. /// /// Futures are used to provide a sentinel through which a value can be /// referenced. They crucially allow chaining and composing operations through /// consumption which allows expressing entire trees of computation as one /// sentinel value. /// /// The ergonomics and implementation of the `Future` trait are very similar to /// the `Iterator` trait in Rust which is where there is a small handful of /// methods to implement and a load of default methods that consume a `Future`, /// producing a new value. /// /// # The `poll` method /// /// The core method of future, `poll`, is used to attempt to generate the value /// of a `Future`. This method *does not block* but is allowed to inform the /// caller that the value is not ready yet. Implementations of `poll` may /// themselves do work to generate the value, but it's guaranteed that this will /// never block the calling thread. /// /// A key aspect of this method is that if the value is not yet available the /// current task is scheduled to receive a notification when it's later ready to /// be made available. This follows what's typically known as a "readiness" or /// "pull" model where values are pulled out of futures on demand, and /// otherwise a task is notified when a value might be ready to get pulled out. /// /// The `poll` method is not intended to be called in general, but rather is /// typically called in the context of a "task" which drives a future to /// completion. For more information on this see the `task` module. /// /// # Combinators /// /// Like iterators, futures provide a large number of combinators to work with /// futures to express computations in a much more natural method than /// scheduling a number of callbacks. For example the `map` method can change /// a `Future<Item=T>` to a `Future<Item=U>` or an `and_then` combinator could /// create a future after the first one is done and only be resolved when the /// second is done. /// /// Combinators act very similarly to the methods on the `Iterator` trait itself /// or those on `Option` and `Result`. Like with iterators, the combinators are /// zero-cost and don't impose any extra layers of indirection you wouldn't /// otherwise have to write down. // TODO: expand this pub trait Future { /// The type of value that this future will resolved with if it is /// successful. type Item; /// The type of error that this future will resolve with if it fails in a /// normal fashion. type Error; /// Query this future to see if its value has become available, registering /// interest if it is not. /// /// This function will check the internal state of the future and assess /// whether the value is ready to be produced. Implementors of this function /// should ensure that a call to this **never blocks** as event loops may /// not work properly otherwise. /// /// When a future is not ready yet, the `Async::NotReady` value will be /// returned. In this situation the future will *also* register interest of /// the current task in the value being produced. That is, once the value is /// ready it will notify the current task that progress can be made. /// /// # Runtime characteristics /// /// This function, `poll`, is the primary method for 'making progress' /// within a tree of futures. For example this method will be called /// repeatedly as the internal state machine makes its various transitions. /// Executors are responsible for ensuring that this function is called in /// the right location (e.g. always on an I/O thread or not). Unless it is /// otherwise arranged to be so, it should be ensured that **implementations /// of this function finish very quickly**. /// /// Returning quickly prevents unnecessarily clogging up threads and/or /// event loops while a `poll` function call, for example, takes up compute /// resources to perform some expensive computation. If it is known ahead /// of time that a call to `poll` may end up taking awhile, the work should /// be offloaded to a thread pool (or something similar) to ensure that /// `poll` can return quickly. /// /// # Return value /// /// This function returns `Async::NotReady` if the future is not ready yet, /// `Err` if the future is finished but resolved to an error, or /// `Async::Ready` with the result of this future if it's finished /// successfully. Once a future has finished it is considered a contract /// error to continue polling the future. /// /// If `NotReady` is returned, then the future will internally register /// interest in the value being produced for the current task. In other /// words, the current task will receive a notification once the value is /// ready to be produced or the future can make progress. /// /// # Panics /// /// Once a future has completed (returned `Ready` or `Err` from `poll`), /// then any future calls to `poll` may panic, block forever, or otherwise /// cause wrong behavior. The `Future` trait itself provides no guarantees /// about the behavior of `poll` after a future has completed. /// /// Callers who may call `poll` too many times may want to consider using /// the `fuse` adaptor which defines the behavior of `poll`, but comes with /// a little bit of extra cost. /// /// Additionally, calls to `poll` must always be made from within the /// context of a task. If a current task is not set then this method will /// likely panic. /// /// # Errors /// /// This future may have failed to finish the computation, in which case /// the `Err` variant will be returned with an appropriate payload of an /// error. fn poll(&mut self) -> Poll<Self::Item, Self::Error>; /// Block the current thread until this future is resolved. /// /// This method will consume ownership of this future, driving it to /// completion via `poll` and blocking the current thread while it's waiting /// for the value to become available. Once the future is resolved the /// result of this future is returned. /// /// > **Note:** This method is not appropriate to call on event loops or /// > similar I/O situations because it will prevent the event /// > loop from making progress (this blocks the thread). This /// > method should only be called when it's guaranteed that the /// > blocking work associated with this future will be completed /// > by another thread. /// /// # Behavior /// /// This function will *pin* this future to the current thread. The future /// will only be polled by this thread. /// /// # Panics /// /// This function does not attempt to catch panics. If the `poll` function /// panics, panics will be propagated to the caller. #[cfg(feature = "use_std")] fn wait(self) -> result::Result<Self::Item, Self::Error> where Self: Sized { ::executor::spawn(self).wait_future() } /// Convenience function for turning this future into a trait object. /// /// This simply avoids the need to write `Box::new` and can often help with /// type inference as well by always returning a trait object. Note that /// this method requires the `Send` bound and returns a `BoxFuture`, which /// also encodes this. If you'd like to create a `Box<Future>` without the /// `Send` bound, then the `Box::new` function can be used instead. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let a: BoxFuture<i32, i32> = result(Ok(1)).boxed(); /// ``` #[cfg(feature = "use_std")] fn boxed(self) -> BoxFuture<Self::Item, Self::Error> where Self: Sized + Send + 'static { ::std::boxed::Box::new(self) } /// Map this future's result to a different type, returning a new future of /// the resulting type. /// /// This function is similar to the `Option::map` or `Iterator::map` where /// it will change the type of the underlying future. This is useful to /// chain along a computation once a future has been resolved. /// /// The closure provided will only be called if this future is resolved /// successfully. If this future returns an error, panics, or is canceled, /// then the closure provided will never be invoked. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it, similar to the existing `map` methods in the /// standard library. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let future_of_1 = ok::<u32, u32>(1); /// let future_of_4 = future_of_1.map(|x| x + 3); /// ``` fn map<F, U>(self, f: F) -> Map<Self, F> where F: FnOnce(Self::Item) -> U, Self: Sized, { assert_future::<U, Self::Error, _>(map::new(self, f)) } /// Map this future's error to a different error, returning a new future. /// /// This function is similar to the `Result::map_err` where it will change /// the error type of the underlying future. This is useful for example to /// ensure that futures have the same error type when used with combinators /// like `select` and `join`. /// /// The closure provided will only be called if this future is resolved /// with an error. If this future returns a success, panics, or is /// canceled, then the closure provided will never be invoked. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let future_of_err_1 = err::<u32, u32>(1); /// let future_of_err_4 = future_of_err_1.map_err(|x| x + 3); /// ``` fn map_err<F, E>(self, f: F) -> MapErr<Self, F> where F: FnOnce(Self::Error) -> E, Self: Sized, { assert_future::<Self::Item, E, _>(map_err::new(self, f)) } /// Map this future's error to any error implementing `From` for /// this future's `Error`, returning a new future. /// /// This function does for futures what `try!` does for `Result`, /// by letting the compiler infer the type of the resulting error. /// Just as `map_err` above, this is useful for example to ensure /// that futures have the same error type when used with /// combinators like `select` and `join`. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let future_of_err_1 = err::<u32, u32>(1); /// let future_of_err_4 = future_of_err_1.from_err::<u32, u32>(); /// ``` fn from_err<F, E:From<Self::Error>>(self) -> FromErr<Self, E> where Self: Sized, { assert_future::<Self::Item, E, _>(from_err::new(self)) } /// Chain on a computation for when a future finished, passing the result of /// the future to the provided closure `f`. /// /// This function can be used to ensure a computation runs regardless of /// the conclusion of the future. The closure provided will be yielded a /// `Result` once the future is complete. /// /// The returned value of the closure must implement the `IntoFuture` trait /// and can represent some more work to be done before the composed future /// is finished. Note that the `Result` type implements the `IntoFuture` /// trait so it is possible to simply alter the `Result` yielded to the /// closure and return it. /// /// If this future is canceled or panics then the closure `f` will not be /// run. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let future_of_1 = ok::<u32, u32>(1); /// let future_of_4 = future_of_1.then(|x| { /// x.map(|y| y + 3) /// }); /// /// let future_of_err_1 = err::<u32, u32>(1); /// let future_of_4 = future_of_err_1.then(|x| { /// match x { /// Ok(_) => panic!("expected an error"), /// Err(y) => ok::<u32, u32>(y + 3), /// } /// }); /// ``` fn then<F, B>(self, f: F) -> Then<Self, B, F> where F: FnOnce(result::Result<Self::Item, Self::Error>) -> B, B: IntoFuture, Self: Sized, { assert_future::<B::Item, B::Error, _>(then::new(self, f)) } /// Execute another future after this one has resolved successfully. /// /// This function can be used to chain two futures together and ensure that /// the final future isn't resolved until both have finished. The closure /// provided is yielded the successful result of this future and returns /// another value which can be converted into a future. /// /// Note that because `Result` implements the `IntoFuture` trait this method /// can also be useful for chaining fallible and serial computations onto /// the end of one future. /// /// If this future is canceled, panics, or completes with an error then the /// provided closure `f` is never called. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let future_of_1 = ok::<u32, u32>(1); /// let future_of_4 = future_of_1.and_then(|x| { /// Ok(x + 3) /// }); /// /// let future_of_err_1 = err::<u32, u32>(1); /// future_of_err_1.and_then(|_| -> FutureResult<u32, u32> { /// panic!("should not be called in case of an error"); /// }); /// ``` fn and_then<F, B>(self, f: F) -> AndThen<Self, B, F> where F: FnOnce(Self::Item) -> B, B: IntoFuture<Error = Self::Error>, Self: Sized, { assert_future::<B::Item, Self::Error, _>(and_then::new(self, f)) } /// Execute another future if this one resolves with an error. /// /// Return a future that passes along this future's value if it succeeds, /// and otherwise passes the error to the closure `f` and waits for the /// future it returns. The closure may also simply return a value that can /// be converted into a future. /// /// Note that because `Result` implements the `IntoFuture` trait this method /// can also be useful for chaining together fallback computations, where /// when one fails, the next is attempted. /// /// If this future is canceled, panics, or completes successfully then the /// provided closure `f` is never called. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let future_of_err_1 = err::<u32, u32>(1); /// let future_of_4 = future_of_err_1.or_else(|x| -> Result<u32, u32> { /// Ok(x + 3) /// }); /// /// let future_of_1 = ok::<u32, u32>(1); /// future_of_1.or_else(|_| -> FutureResult<u32, u32> { /// panic!("should not be called in case of success"); /// }); /// ``` fn or_else<F, B>(self, f: F) -> OrElse<Self, B, F> where F: FnOnce(Self::Error) -> B, B: IntoFuture<Item = Self::Item>, Self: Sized, { assert_future::<Self::Item, B::Error, _>(or_else::new(self, f)) } /// Waits for either one of two futures to complete. /// /// This function will return a new future which awaits for either this or /// the `other` future to complete. The returned future will finish with /// both the value resolved and a future representing the completion of the /// other work. Both futures must have the same item and error type. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// // A poor-man's join implemented on top of select /// /// fn join<A>(a: A, b: A) -> BoxFuture<(u32, u32), u32> /// where A: Future<Item = u32, Error = u32> + Send + 'static, /// { /// a.select(b).then(|res| { /// match res { /// Ok((a, b)) => b.map(move |b| (a, b)).boxed(), /// Err((a, _)) => err(a).boxed(), /// } /// }).boxed() /// } /// ``` fn select<B>(self, other: B) -> Select<Self, B::Future> where B: IntoFuture<Item=Self::Item, Error=Self::Error>, Self: Sized, { let f = select::new(self, other.into_future()); assert_future::<(Self::Item, SelectNext<Self, B::Future>), (Self::Error, SelectNext<Self, B::Future>), _>(f) } /// Joins the result of two futures, waiting for them both to complete. /// /// This function will return a new future which awaits both this and the /// `other` future to complete. The returned future will finish with a tuple /// of both results. /// /// Both futures must have the same error type, and if either finishes with /// an error then the other will be canceled and that error will be /// returned. /// /// If either future is canceled or panics, the other is canceled and the /// original error is propagated upwards. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let a = ok::<u32, u32>(1); /// let b = ok::<u32, u32>(2); /// let pair = a.join(b); /// /// pair.map(|(a, b)| { /// assert_eq!(a, 1); /// assert_eq!(b, 2); /// }); /// ``` fn join<B>(self, other: B) -> Join<Self, B::Future> where B: IntoFuture<Error=Self::Error>, Self: Sized, { let f = join::new(self, other.into_future()); assert_future::<(Self::Item, B::Item), Self::Error, _>(f) } /// Same as `join`, but with more futures. fn join3<B, C>(self, b: B, c: C) -> Join3<Self, B::Future, C::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, Self: Sized, { join::new3(self, b.into_future(), c.into_future()) } /// Same as `join`, but with more futures. fn join4<B, C, D>(self, b: B, c: C, d: D) -> Join4<Self, B::Future, C::Future, D::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, D: IntoFuture<Error=Self::Error>, Self: Sized, { join::new4(self, b.into_future(), c.into_future(), d.into_future()) } /// Same as `join`, but with more futures. fn join5<B, C, D, E>(self, b: B, c: C, d: D, e: E) -> Join5<Self, B::Future, C::Future, D::Future, E::Future> where B: IntoFuture<Error=Self::Error>, C: IntoFuture<Error=Self::Error>, D: IntoFuture<Error=Self::Error>, E: IntoFuture<Error=Self::Error>, Self: Sized, { join::new5(self, b.into_future(), c.into_future(), d.into_future(), e.into_future()) } /// Convert this future into single element stream. /// /// Resulting stream contains single success if this future resolves to /// success and single error if this future resolves into error. /// /// # Examples /// /// ``` /// use futures::Async; /// use futures::stream::Stream; /// use futures::future::*; /// /// let future = ok::<_, bool>(17); /// let mut stream = future.into_stream(); /// assert_eq!(Ok(Async::Ready(Some(17))), stream.poll()); /// assert_eq!(Ok(Async::Ready(None)), stream.poll()); /// /// let future = err::<bool, _>(19); /// let mut stream = future.into_stream(); /// assert_eq!(Err(19), stream.poll()); /// assert_eq!(Ok(Async::Ready(None)), stream.poll()); /// ``` fn into_stream(self) -> IntoStream<Self> where Self: Sized { into_stream::new(self) } /// Flatten the execution of this future when the successful result of this /// future is itself another future. /// /// This can be useful when combining futures together to flatten the /// computation out the the final result. This method can only be called /// when the successful result of this future itself implements the /// `IntoFuture` trait and the error can be created from this future's error /// type. /// /// This method is equivalent to `self.then(|x| x)`. /// /// Note that this function consumes the receiving future and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let future_of_a_future = ok::<_, u32>(ok::<u32, u32>(1)); /// let future_of_1 = future_of_a_future.flatten(); /// ``` fn flatten(self) -> Flatten<Self> where Self::Item: IntoFuture, <<Self as Future>::Item as IntoFuture>::Error: From<<Self as Future>::Error>, Self: Sized { let f = flatten::new(self); assert_future::<<<Self as Future>::Item as IntoFuture>::Item, <<Self as Future>::Item as IntoFuture>::Error, _>(f) } /// Flatten the execution of this future when the successful result of this /// future is a stream. /// /// This can be useful when stream initialization is deferred, and it is /// convenient to work with that stream as if stream was available at the /// call site. /// /// Note that this function consumes this future and returns a wrapped /// version of it. /// /// # Examples /// /// ``` /// use futures::stream::{self, Stream}; /// use futures::future::*; /// /// let stream_items = vec![Ok(17), Err(true), Ok(19)]; /// let future_of_a_stream = ok::<_, bool>(stream::iter(stream_items)); /// /// let stream = future_of_a_stream.flatten_stream(); /// /// let mut iter = stream.wait(); /// assert_eq!(Ok(17), iter.next().unwrap()); /// assert_eq!(Err(true), iter.next().unwrap()); /// assert_eq!(Ok(19), iter.next().unwrap()); /// assert_eq!(None, iter.next()); /// ``` fn flatten_stream(self) -> FlattenStream<Self> where <Self as Future>::Item: stream::Stream<Error=Self::Error>, Self: Sized { flatten_stream::new(self) } /// Fuse a future such that `poll` will never again be called once it has /// completed. /// /// Currently once a future has returned `Ready` or `Err` from /// `poll` any further calls could exhibit bad behavior such as blocking /// forever, panicking, never returning, etc. If it is known that `poll` /// may be called too often then this method can be used to ensure that it /// has defined semantics. /// /// Once a future has been `fuse`d and it returns a completion from `poll`, /// then it will forever return `NotReady` from `poll` again (never /// resolve). This, unlike the trait's `poll` method, is guaranteed. /// /// Additionally, once a future has completed, this `Fuse` combinator will /// ensure that all registered callbacks will not be registered with the /// underlying future. /// /// # Examples /// /// ```rust /// use futures::Async; /// use futures::future::*; /// /// let mut future = ok::<i32, u32>(2); /// assert_eq!(future.poll(), Ok(Async::Ready(2))); /// /// // Normally, a call such as this would panic: /// //future.poll(); /// /// // This, however, is guaranteed to not panic /// let mut future = ok::<i32, u32>(2).fuse(); /// assert_eq!(future.poll(), Ok(Async::Ready(2))); /// assert_eq!(future.poll(), Ok(Async::NotReady)); /// ``` fn fuse(self) -> Fuse<Self> where Self: Sized { let f = fuse::new(self); assert_future::<Self::Item, Self::Error, _>(f) } /// Catches unwinding panics while polling the future. /// /// In general, panics within a future can propagate all the way out to the /// task level. This combinator makes it possible to halt unwinding within /// the future itself. It's most commonly used within task executors. /// /// Note that this method requires the `UnwindSafe` bound from the standard /// library. This isn't always applied automatically, and the standard /// library provides an `AssertUnwindSafe` wrapper type to apply it /// after-the fact. To assist using this method, the `Future` trait is also /// implemented for `AssertUnwindSafe<F>` where `F` implements `Future`. /// /// # Examples /// /// ```rust /// use futures::future::*; /// /// let mut future = ok::<i32, u32>(2); /// assert!(future.catch_unwind().wait().is_ok()); /// /// let mut future = lazy(|| { /// panic!(); /// ok::<i32, u32>(2) /// }); /// assert!(future.catch_unwind().wait().is_err()); /// ``` #[cfg(feature = "use_std")] fn catch_unwind(self) -> CatchUnwind<Self> where Self: Sized + ::std::panic::UnwindSafe { catch_unwind::new(self) } /// Convert this future into `Shared` future. /// /// The shared() method provides a mean to convert any future into a cloneable future. /// It enables a future to be polled by multiple threads. /// /// `Shared` contains finishes with `SharedItem<T>` where T is the original future item, /// or with `SharedError<E>` where E is the original future item. /// Both `SharedItem` and `SharedError` implements `Deref`, /// so only a deref is required in order to access the item/error. /// /// # Examples /// /// ``` /// use futures::future::*; /// /// let future = ok::<_, bool>(6); /// let shared1 = future.shared(); /// let shared2 = shared1.clone(); /// assert_eq!(6, *shared1.wait().unwrap()); /// assert_eq!(6, *shared2.wait().unwrap()); /// ``` /// /// ``` /// use std::thread; /// use futures::future::*; /// /// let future = ok::<_, bool>(6); /// let shared1 = future.shared(); /// let shared2 = shared1.clone(); /// let join_handle = thread::spawn(move || { /// assert_eq!(6, *shared2.wait().unwrap()); /// }); /// assert_eq!(6, *shared1.wait().unwrap()); /// join_handle.join().unwrap(); /// ``` #[cfg(feature = "use_std")] fn shared(self) -> Shared<Self> where Self: Sized { Shared::new(self) } } impl<'a, F: ?Sized + Future> Future for &'a mut F { type Item = F::Item; type Error = F::Error; fn poll(&mut self) -> Poll<Self::Item, Self::Error> { (**self).poll() } } // Just a helper function to ensure the futures we're returning all have the // right implementations. fn assert_future<A, B, F>(t: F) -> F where F: Future<Item=A, Error=B>, { t } /// Class of types which can be converted themselves into a future. /// /// This trait is very similar to the `IntoIterator` trait and is intended to be /// used in a very similar fashion. pub trait IntoFuture { /// The future that this type can be converted into. type Future: Future<Item=Self::Item, Error=Self::Error>; /// The item that the future may resolve with. type Item; /// The error that the future may resolve with. type Error; /// Consumes this object and produces a future. fn into_future(self) -> Self::Future; } impl<F: Future> IntoFuture for F { type Future = F; type Item = F::Item; type Error = F::Error; fn into_future(self) -> F { self } } impl<T, E> IntoFuture for result::Result<T, E> { type Future = FutureResult<T, E>; type Item = T; type Error = E; fn into_future(self) -> FutureResult<T, E> { result(self) } } /// Asynchronous conversion from a type `T`. /// /// This trait is analogous to `std::convert::From`, adapted to asynchronous /// computation. pub trait FutureFrom<T>: Sized { /// The future for the conversion. type Future: Future<Item=Self, Error=Self::Error>; /// Possible errors during conversion. type Error; /// Consume the given value, beginning the conversion. fn future_from(T) -> Self::Future; }